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1. Introduction

More than anything else, the increase of computing power seems to stimulate
the greed for tackling ever larger problems involving large-scale numerical
simulation. As a consequence, the need for understanding something like
the intrinsic complerity of a problem occupies a more and more pivotal po-
sition. Moreover, computability often only becomes feasible if an algorithm
can be found that is asymptotically optimal. This means that storage and
the number of floating point operations needed to resolve the problem with
desired accuracy remain proportional to the problem size when the resolu-
tion of the discretization is refined. A significant reduction of complexity
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is indeed often possible, when the underlying problem admits a continuous
model in terms of differential or integral equations. The physical phenom-
ena behind such a model usually exhibit characteristic features over a wide
range of scales. Accordingly, the most successful numerical schemes exploit
in one way or another the interaction of different scales of discretization.
A very prominent representative is the multigrid methodology; see, for in-
stance, Hackbusch (1985) and Bramble (1993). In a way it has caused a
breakthrough in numerical analysis since, in an important range of cases,
it does indeed provide asymptotically optimal schemes. For closely related
multilevel techniques and a unified treatment of several variants, such as
multiplicative or additive subspace correction methods, see Bramble, Pasciak
and Xu (1990), Oswald (1994), Xu (1992), and Yserentant (1993). Although
there remain many unresolved problems, multigrid or multilevel schemes in
the classical framework of finite difference and finite element discretizations
exhibit by now a comparatively clear profile. They are particularly powerful
for elliptic and parabolic problems.

1.1. Is there any vision?

Much more recently, the wavelet concept has (at least initially) raised high
expectations. Traditional primary applications of wavelets have been signal
analysis/processing, image processing/compression, etc. What are the reas-
ons for the recent explosion of activities centred upon wavelets in connection
with the numerical treatment of PDEs? Of course, anything that looks new
inspires curiosity: there is certainly a bandwagon effect. Also, mathematical
beauty plays a role. Perhaps it is just a fashionable new wave that will soon
come to rest. In any case, comparisons of wavelet methods with conven-
tional schemes should help in finding an answer. However, it is not that
simple. First of all, the picture of wavelet concepts appears to be still quite
fuzzy for several reasons. On one hand, at the present stage there simply
do not yet exist complete software packages for complex real life problems,
which would admit fair performance comparisons. On the other hand, the
development of concepts and ideas is still far from steady state.

To find a reasonable path through the jungle, it is therefore worth spend-
ing some time on what could actually be expected.

First of all, is there any need to look at alternatives to multigrid? Of
course, curiosity is a perfect reason. But looking again more closely at the
multigrid methodology, its performance is best understood with respect to
uniform mesh refinements and asymptotic optimality in the above sense
refers to such settings. However, a fully refined mesh may not be necessary
to resolve sufficiently the desired solution. To avoid this potential waste, ad-
aptive techniques have to be and are indeed employed. There are many pos-
sibilities ranging from a priori local mesh refinements to fully self-adaptive
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schemes. In this regard, problems of a different type are encountered. On
one hand, we need a thorough analysis to control the local refinement steps.
The corresponding local information is usually implicit: it is derived by com-
paring different discretizations. At this point some heuristics usually enter.
On the other hand, the mesh refinements cause geometrical problems that
have nothing to do with the underlying problem. Overall, these matters
appear to be somewhat better understood for the additive version (Oswald
1994) (which by the way is closer to the wavelet concept), while otherwise
the multiplicative version is often more efficient. So there still appears to be
a strong need for a better understanding of adaptivity in this context, both
with regard to the underlying analytical concepts and to the corresponding
data structures.

On the other hand, by their very nature, wavelet representations have
a naturally built-in adaptivity through their ability to directly express and
separate components living on different scales. This, combined with the fact
that many operators and their inverses have (nearly) sparse representations
in wavelet coordinates, may eventually lead to competitive or even superior
schemes with regard to the following goal: keep the computational work
proportional to the number of significant terms in the wavelet expansion of
the searched object, which in some sense should reflect its intrinsic com-
plexity; see, for example, Beylkin and Keiser (1997) and Dahlke, Dahmen,
Hochmuth and Schneider (19975).

The potential of this point of view will be one of the main themes of sub-
sequent discussions. Wavelets are in some sense much more sophisticated
tools than conventional discretizations. It will be seen that this also facil-
itates a refined analysis. One central objective of this paper is to highlight
some of the underlying driving analytical mechanisms.

The price of a powerful tool is the effort required to construct and un-
derstand it. Its successful application hinges on the realization of a number
of requirements. Some space has to be reserved for a clear identification of
these requirements as well as for their realization. This is also particularly
important for understanding the severe obstructions that keep us at present
from readily materializing all the principally promising perspectives.

These obstructions are to a great extent related to constraints imposed by
domain geometries. There may be a good chance to reduce many problems
to a periodized one (by an additional separate treatment of boundary condi-
tions). In the periodic case ideal wavelets are available. Nevertheless, there
will still remain important problem classes for which this strategy does not
work. Therefore I will deviate from the usual way of motivating and devel-
oping wavelet concepts by means of Fourier analysis. Instead, some effort
will be spent on formulating a sufficiently general and flexible framework
of multiresolution decompositions that can host a variety of specializations.
Moreover, appropriate substitutes for the Fourier tools have to be developed.
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Wavelets are traditionally associated with orthonormal bases. A closer
look reveals that orthogonality is often convenient but not essential. In
presenting the material I will deviate sometimes from the original sources
by formulating things in the more flexible context of biorthogonality. While
this often supports locality and helps to bring out what really is essential, it
will also be seen sometimes to be simply better, and even offers interesting
new combinations of different concepts.

Of course, the acceptance of new concepts increases with their practical
success. Somehow the measure is set by the existing modern multigrid
techniques. The competition between different methodologies can be very
stimulating. It should not be the primary point of view though. I person-
ally believe that the additional insight gained from different, yet related,
concepts will be mutually beneficial. Perhaps at a later stage, a marriage
of complementary components and an enriched supply of tools will lead to
true improvements.

As mentioned before, the presentation of material will necessarily be very
selective. The selection criteria will not include optimal performance in
existing algorithms, but will instead attempt to bring out ideas and concepts
that bear some potential for future developments or, on the other hand,
explain inherent limitations. Last but not least, my ignorance is to blame.
I apologize to all those whose contributions do not get a proper share.

I shall next briefly discuss some simple examples in connection with ad-
mittedly trivial problems. Their purpose is only to help in identifying a
few characteristic features that will then serve as a guideline for subsequent
developments.

1.2. The Haar basis
The scaled shifts

¢j,k:2j/2¢(2j~—k), k=0,...27 -1,

of the box function

1, 0<z<1,
d)(.’l:) - { 0’ else, (11)

form an orthonormal basis of their linear span S; relative to the standard
1
inner product (f,g) = (f, g)jo.] := | /(z)g(x) dz. Since
0
d(x) = ¢(2x) + ¢(2z — 1),
so that

1
bik = E(¢j+1,2k + dj+1,2k+1 ) (1.2)
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the S; are nested and the closure of their union relative to || - ||z,(jo,1)) =
(-,)1/2 is all of Ly([0,1]) (the space of square integrable functions on [0, 1]).
Thus, denoting by P;f the orthogonal projection of f onto Sj, one has the
representation

f=Pf+Y (P—P1)f.

Jj=1

The components (P; — Pj_1)f represent the ‘detail’ added to a given ap-
proximation when progressing to the next higher scale of discretization. In
the present situation it can be conveniently encoded by the functions

1 .
Vjk = E(¢j+1,2k — $jr12k+1), k=0,...,27 —1, (1.3)

where, as before, ¥, x := 29/29(27 - —k), and ¥(z) 1= ¢(22) — ¢(2z — 1). In
fact, one easily verifies that

(@(-=E),9(-=0)) =0, (b(-—k),¥(-=1)) =bks, k1=0,...,27-1, (1.4)
so that
(Vi Yn) = 6jnbk- (1.5)
Thus
U= {¢p}U{¢jr:k=0,...,27 =1, =0,1,2,...} (1.6)

constitutes an orthonormal basis for L2(]0,1]) and every f € Ly([0,1]) has
a unique expansion

F=50  Ifliqonp= 2 H9)2 (1.7)
Yewr

Yew

The equivalence between continuous and discrete norms will frequently play
a pivotal role in subsequent discussions.

As a first instance, relation (1.7) suggests the following simple strategy for
approximating a given f by a piecewise constant with possibly few pieces.
Suppose that all the wavelet coefficients {f, ), € ¥, were known, and that
the set A C ¥, such that #A < N, contains the N largest terms |(f,v¥)|,
then the function Py f = 3-,,c5(f, %)% would, on account of (1.7), minimize
the error among all piecewise constants on dyadic partitions with at most
N pieces.

The selection of the N biggest terms is of course a nonlinear process. This
aspect has been thoroughly discussed, for instance by DeVore and Lucier
(1992) and DeVore, Jawerth and Popov (1992), and will be taken up in
more detail again later in connection with adaptive methods. Here we add
only a few comments, which are similar in spirit. Suppose that g; € Sy is
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some approximation of g. It therefore has a representation

271

971=Y_ ckbik

k=0

in terms of the single scale basis functions ¢ on the highest scale J. Note
that although g¢g; may have a very simple structure, such as a constant
throughout a large part or even all of [0,1], all the 27 coefficients could be
stgnificant in that they are needed to preserve accuracy. On the other hand,
g has a wavelet or multiscale representation

J—12i-1

97 ={g,000)000+ >_ > dikVjk-

7=0 k=0

If g; were a constant, all the d;; would vanish.
In general, one expects the d; to be very small where g; does not vary
much. In fact, if f were differentiable on the support of ;x, then, since

1
<¢o,o,wj,k>=/wj,k(a:> dz=0, k=0,....2%—1, j>0, (18)
0

one obtains
(fsdim)l = i (f = eyl < E1F = cll Ly e-sk2-5 k1))
< 270 f N Laqa-sk2-s ey (1.9)

Thus, discarding wavelet coefficients that stay below a given threshold
may compress the representation significantly, while the accuracy is, in view
of (1.7), still controllable. The key is (1.8), which is often referred to as
moment conditions. Obviously, the vanishing of moments of even higher
polynomial order would increase the compression effect.

Of course, to exploit these facts practically requires switching back and
forth between single- and multiscale representation. This issue will be ad-
dressed later in more generality.

1.8. The Hilbert transform

The compression of functions has a counterpart for operators. The fact that
differential operators admit sparse representations is not surprising. Instead,
consider the Hilbert transform

(1)(e) = 2o [ L gy (1.10)
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as an example of a typical singular integral operator. Here p.v. means

‘principal value’, that is, p.v. [ f(z)dz = lim._,o+ [ f(z)dz. Its rep-
R R\(—¢,€)

resentation relative to the Haar basis requires the\ entries H; 1) am) =

(HY1m, ¥jk). Suppose now that 274 m + 1) < 277k, and | > j, that is,

the supports of ¢y, and v, are disjoint. Then, by (1.8) and Taylor’s

expansion around y = 2~‘m, one obtains

m ‘H (j,k>,(l,m)‘
279 (k+1) , 27 (m+1)

-/ { / (xiy—x_é_lm)wz,mw)dy}wj,k(:c)dx

2=ik 2-lm

27 m41) , 279 (k+1)

— 9ol
= / / (31_2__)1%-,]9 (z) dx}d)l,m (y) dy

_ (x — yl,m)2
2-lm 2-Jk

3

for some ¥ ,,, in the support [27'm, 27 (m + 1)] of Y1.m. Repeating the same
argument, one can subtract a constant in x which yields

7f ‘H(j,k),a,m)’ =

{ 279 (k+1)

On account of Taylor’s expansion around z =‘2'j k, the factor in front of
¥; k() can be written as —2(y — _2_lm)(x —279k) /(xjk — Yim)3, where z;
is some point in the support [277k,277(k + 1)] of the wavelet ;. Noting
that

2=Hm+1)

— 2‘lm — 2_lm
<((Z- _ yl,m)z) B (2(EJJ']C — yl,m>)2> wj,k(x) dx}wl,m(y) dy

2=tm 27k

[ Win(@)ldo < 27972
R

a straightforward estimate provides

—li-13
—(n+5)319—7 -1 _-3_ 2 2
7| Hj, tmy| < 273277k — 270 = k=2 tmp

(1.11)

Thus the entries H(j ) (m,) exhibit a decay with increasing distance of
the supports of the wavelets as well as with increasing distance of scales. In
essence this behaviour persists for a large class of integral operators and is
the key to sparsify the discretization of such operators.



62 W. DAHMEN

1.4. A two-point boundary value problem

Consider
—u" = f on[0,1], u(0)=u(l)=0, (1.12)

as a simple model for an elliptic second-order boundary value problem. Al-
though there are, of course, much simpler ways of solving (1.12), we start
from the standard weak formulation

(W', v') = (f,v), ve HO,1)]). (1.13)

Here H}([0,1]) is the closure of all C* functions with compact support in
(0,1) relative to the norm ||f||H1([0,1]) = (”f”%z([o,l]) + ”f’”%z([o,l]))l/z- To
make our point, we use a standard Galerkin approach and solve (1.13) on
finite-dimensional spaces S; C H}([0,1]). The simplest conforming choice
of the trial spaces S; are the spans of scaled tent functions

dik(@) = 2292 - —k), k=0,...,27, (1.14)

where
pz)=< 11—z, 0<z <1, (1.15)

14z, -1<z<L0,
0, otherwise.

Choosing the ¢, as basis functions for Sy, the Galerkin conditions
(uj,v) = (f,v), ves; (1.16)
give rise to a linear system of equations
Aju=f, (1.17)

where A is the stiffness matrix relative to the basis functions ¢;; and u,
f are corresponding vectors with fx = (f,¢jx). Clearly A; is tridiagonal.
Hence (1.17) is very efficiently solvable. However, for higher-dimensional
analogues the matrix would no longer have such a narrow bandwidth and
one has to resort to iterative methods to preserve sparseness.

On the other hand, recalling the min-max characterization of the smallest
and largest eigenvalue of a symmetric positive definite matrix, it is easy to
see that the condition numbers of A grow like 22/, which renders classical
iterative methods prohibitively inefficient.

To remedy this, one has to precondition the linear systems. One way is to
exploit suitable multiscale decompositions of the trial spaces S;. First note
that, since

b(z) = %qs(za: +1) + ¢(23) + %¢(2x 1), (1.18)
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the S; are nested and, of course, their union is dense in Ly([0, 1]).

In order to successively update solutions from coarser grids, we con-
sider the following hierarchical decomposition of the trial spaces (Yserentant
1986). Instead of using orthogonal projections as in Section 1.2, we consider
the Lagrange projectors

23
Lif =Y 2792 f(27k) ¢, (1.20)

k=0
and note that the complements
Wj = (Ljt1 — Ly)Sjn1 (1.21)

are simply spanned by the tent functions on new grid points on the next
higher scale

;= {jk = djr126+1: k=0,...,27 — 1}, (1.22)

Note that neither the ¢;; nor the v, are orthogonal but it is not hard to
show that they satisfy the stability condition

9i 1/2 9 o 1/2
1 (Z |Ck|2) < Z CkPjk < e (Z |ck|2) (1.23)
k=0 k=0 La(0,1]) k=0

for some constants ¢, c3 independent of the sequence {ck}%io. Keeping this
in mind, we now consider stiffness matrices relative to the hierarchical bases
composed of the bases ¥;, and note that

d d .3
E;ij,k(x) = %¢j+l,2k+l(m) =272yl (z), (1.24)

where z/)fk are the Haar wavelets from (1.3). Therefore one obtains from (1.5)

i d . s
<%¢j,ka %¢n,z> = 2/tns <¢fk,¢gz> = 275436, g

Hence A is, up to a 2 x 2 upper left block stemming from the coarse grid
space Sy, a diagonal matrix, which is trivially preconditioned by symmetric
diagonal scalings.

Now, one has to be somewhat careful when extrapolating from this ob-
servation. The fact that the hierarchical basis functions v;; are actually
orthogonal relative to the energy inner product is an artefact. In two dimen-
sions this is no longer the case but it turns out that the hierarchical stiffness
matrices can still be preconditioned by diagonal scaling to efficiently reduce
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the growth of the condition numbers to logarithmic behaviour. Moreover,
it has suggested similar strategies involving other multiscale bases which do
better. Corresponding preconditioning techniques are a central theme in
subsequent discussions.

1.5. Some basic ideas

Next, I would like to blend these examples into a general picture to provide
some orientation and unifying structure for the subsequent discussions of a
diversity of ideas.

To this end, suppose that

U= {y): A€V} (1.25)

is a countable basis of some Hilbert space H. Thus every v € H has a unique
convergent expansion in terms of elements of ¥

v=Y" dapx (1.26)

Aev

The dependence of the coeflicients {dy)} on v can be expressed via the dual
basis. This is a collection of functionals

U= {’l[;,\ A€ V},
such that
(Vx,ox) =, MNNEV, (1.27)

where (-, -} denotes the inner product on H. When H is infinite-dimensional,
the notion of basis has to be further specified, but we will defer this issue
for the moment. The collection of Haar functions z/)Hk forms such a basis for
H = Ly([0,1]). In this case the indices A = (j, k) encode the information
about scale and location. Of course, in the case of the Haar basis ¥ = U
one has ¥ = ¥. Equation (1.27) means that the coefficients dy in the
expansion of v relative to ¥ are given by dy = (v, ¥,).

To simplify further exposition, I now introduce a compact notation for
bases and their transforms that will be consistently used throughout the
rest of the paper. Formally, let us view a given (countable) collection of
functions ® in H as a (column) vector (of possibly infinite length), so that
an expansion with coefficients ¢y, ¢ € ® can be formally treated as an ‘inner

product’
cTo =3 cyp.
o
The sum is always understood to converge in the norm of the underlying

space, and the superscript T' denotes ‘transpose’. Likewise, for any v € H,
the quantities (®,v) and (v, ®) mean the column-, respectively row-vector,
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of coefficients (¢, v), (v, ¢), ¢ € ®. Thus (1.26) can be written for short as
dT¥. Boldface lower case or capital letters will always denote sequences or
matrices acting on sequences, respectively.

To push this a little further, for any two countable collections ®,= of
functions, we consider the (possibly infinite) matrix

(®,5) = ((¢,€)) peca ez
Specifically, the above biorthogonality relations (1.27) then become

(U, 0) =1, (1.28)

where I denotes the identity matrix (whose dimension should be clear from
the context).

The examples in Sections 1.3 and 1.4 can be viewed as special cases of the
following situation. Suppose that H; and Ho are Hilbert spaces such that
either one of the continuous embeddings

HCHCH; or HCHCH

holds. In many cases of interest, Ho is the dual of Hy, that is, the space of
bounded linear functionals on H; relative to the duality pairing induced by
the inner product (-, -) on the (intermediate) space H. Furthermore, suppose
that £ is a bounded linear bijection that maps Hy, onto Ho, that is,

1Lolla, ~ lvllm, v e H, (1.29)

where here and below a ~ b meansa < band b < a. The latter relations
express that b can be bounded by some constant times a uniformly in any
parameters on which a and b may depend. Hence the equation

Lu=f (1.30)

has a unique solution u € H; for every f € H;. In Section 1.3 we had
L = H, Hy = Hy = Ly(R), while in Section 1.4 £ = — 25 H; = H{([0,1]),
Hy = H71([0,1]), the dual of Hj([0, 1]).

The basic idea is to transform the (continuous) equation (1.30) into an
infinite discrete system of equations. This can be done with the aid of
suitable bases for the spaces under consideration.

Given such bases, seeking the solution u of (1.29) is equivalent to finding
the expansion sequence d of u = d?¥. Inserting this into (1.30) yields
(L¥)Td = f. Now suppose that © = {f) : A € V} is total over Hy, that
is, (v,0) = 0 implies v = 0 for v € Hy. Then (L¥)Td = f becomes the
(infinite) system

(£¥,0)Td = (f,6)T. (1.31)
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The objective now is to find collections ¥ and © for which the system (1.31)
is efficiently solvable. This can be approached from several different angles.

(a) Diagonalization

The ideal case would be to know a complete system ¥ of eigenfunctions so
that the choice © = ¥ would diagonalize (1.31). Of course, in practice this
is usually not feasible. However, when ¥ and ¥ are regular enough in the
sense that the collections

0:=(LTH W cH, ©:=LVCH,, (1.32)
then biorthogonality (1.28) implies

that is, biorthogonality of the pair O, 6. Here L£* denotes the dual or adjoint
of £ defined by (Lu,v) = (u,L*v). In this case the solution u = d7V¥ is
given by

d=1(6,f), u=/(f0)W. (1.34)

When V¥ is a wavelet basis, it will be seen that under certain assumptions
on L (defined on R™ or the torus), the elements of © share several properties
with wavelets. The ) are then called vaguelettes. Truncation of (f, ©)W¥
would readily yield an approximation to u. Note that this can be viewed as
a Petrov-Galerkin scheme.

(b) Preconditioning

One expects that vaguelettes are numerically accessible only in special cases
such as for constant coefficient differential elliptic operators on R™ or the
torus. However, these cases may be in some sense close to more realistic
cases, which opens possibilities for preconditioning.

Alternatively, one could relax the requirements on the bases ¥ and ©.
Again one could view the eigensystem as the ideal choice. A simple diagonal
scaling would then transform (£¥, ¥)7 into I. Thus one could ask for bases
¥ such that for a suitable diagonal matrix D,

B:=D(L?, "D <1 (1.35)

is spectrally equivalent to the identity, in the sense that B and its inverse
B! are bounded in the Euclidean norm Id[l7, (v := d*d, where d* := d’
is the usual complex conjugate transpose.

Note that the principal sections of the infinite matrix B correspond to the
stiffness matrices arising from a Galerkin scheme applied to (1.30) based on
trial spaces spanned by subsets of ¥. Relation (1.35) means that these
linear systems are uniformly well conditioned. Such a ¥ would be in some
sense sufficiently close to the eigensystem of £. It will be seen that for
a wide class of operators wavelet bases have that property. The precise
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choice of D depends on £ or, more precisely, on the pair of spaces Hy, Ha
in (1.29). For instance, in Section 1.4 the diagonal entries of D would be
2) for A := (j,k). In this context Sobolev spaces play a central role and
the question of preconditioning will be seen to be intimately connected with
the characterization of Sobolev spaces in terms of certain discrete norms
induced by wavelet expansions.

(c) Sparse representations

The similarity between wavelet bases and eigensystems extends beyond the
preconditioning effect. Indeed, for many operators the matrices B in (1.35),
as well as their inverses, are nearly sparse. This means that replacing entries
below a given threshold by zero yields a sparse matrix. When £ is a dif-
ferential operator and the wavelets have compact support this may not be
too surprising (although the mixing of different levels creates, in general, a
less sparse structure than shape functions with small support on the highest
discretization level). However, it even remains true for certain integral op-
erators as indicated by the estimate (1.11) for (H¥# ). Quantifying this
sparsification will depend on £ and on certain properties of the wavelet basis
that will have to be clarified.

(d) Significant coefficients and adaptivity

Once you can track the wavelets in ¥ needed to represent the solution u
of (1.30) accurately, one can, in principle, restrict the computations to the
corresponding subspaces. Combining this with the sparse representation
of operators is perhaps one of the most promising perspectives of wavelet
concepts. A significant part of subsequent discussions will be initiated by
this issue.

1.6. The structure of the paper

Here is a short overview of the material and the way it is organized. Sec-
tion 2 outlines the scope of problems to be treated and indicates corres-
ponding basic obstructions to an efficient numerical solution. It is clear from
the preceding discussion that, for each problem, the properties of underlying
function spaces, in particular Sobolev spaces, have to be taken into account.
A few preliminaries of this sort will therefore be collected first.

The objective of this paper is by no means the construction of wavelets.
However, the performance of a wavelet scheme relies on very specific prop-
erties of the wavelet basis. I find it unsatisfactory to simply assume these
properties without indicating to what extent and at what cost these prop-
erties may actually be realized. Therefore the construction of the tools also
provides the necessary understanding for its limitations. Consequently some
space has to be reserved for discussing properties of multiscale bases. Guided
by the examples in Sections 1.2 and 1.4, Section 3 begins by describing a
general framework of multiresolution decompositions: this is to provide a
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uniform platform for all the subsequent specifications, in particular, those
which involve more complex domain geometries. The simple but useful con-
cepts of stable completions is emphasized as a construction device that can
still be used under circumstances where, for instance, classical arguments
based on Fourier techniques no longer apply.

Section 4 outlines some examples of multiscale decompositions and wave-
let bases, which will later be referred to frequently. So-called hierarchical
bases on bivariate triangulations (as a straightforward generalization of the
construction in Section 1.4) will serve later as a bridge to developments in
the finite element context. Wavelets defined on all of Euclidean space, their
periodized versions, and wavelets on cubes are by far best understood. A few
facts are recorded here which are important for further extensions needed
later on.

Multiresolution originates from the classical setting concerning the full
Euclidean space. The shift- and scale-invariance of its ingredients provide a
comfortable basis for constructions and admit in combination with Fourier
techniques best computational efficiency. While wavelets are usually as-
sociated with orthogonal bases, the concept of biorthogonal wavelets is em-
phasized, because it offers much more flexibility and localization (in physical
space). I will try to indicate later that this actually pays dividends in several
applications.

Much of the comfort of shift- and dilation-invariance can still be retained
when dealing with wavelets on the interval (and hence on cubes). This
still looks very restrictive, but it will turn out later to be an important
ingredient for extending the application of wavelet schemes, for instance to
closed surfaces or other manifolds. I have collected these construction issues
in one section, so that those who are familiar with this material can easily
skip over this section.

Section 5 addresses the heart of the matter. Once one is willing to
dispense with orthogonality, one has to understand which type of decom-
positions are actually suitable. A classical theme in functional analysis is
to characterize function spaces through isomorphisms into sequence spaces.
The discussion in Section 1.5 has already stressed this point as a basic vehicle
for developing discretizations. Orthonormal bases naturally induce such iso-
morphisms. When deviating from orthogonality, the leeway is easily seen
to be set by the concept of Riesz bases, which in turn brings in the notion
of biorthogonal bases. Whereas biorthogonality is necessary, it is not quite
sufficient for establishing the desired norm equivalences. The objective of
Section 5 is to bring out what is needed in addition. In order to be able
to apply this to several cases, this is formulated for a general Hilbert space
setting (see Section 5.2). It should be stressed that the additional stability
criteria concern properties of the underlying multiresolution spaces not of
the particular bases. Therefore things are kept in a basis-free form. Again,
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to guarantee flexible applicability, these criteria do not resort to Fourier
techniques but are based on a pair of inequalities, describing regularity and
approzximation properties of the underlying multiresolution spaces (see Sec-
tion 5.1). The most important application for the present purpose is the
characterization of Sobolev spaces in Section 5.3 for all relevant versions of
underlying domains, including manifolds such as closed surfaces. These facts
will later play a crucial role in three different contexts, namely precondition-
ing (recall Section 1.5, (b)), thresholding strategies for matriz compression
(see Section 1.5, (c)) and the analysis of adaptive schemes (see Section 1.5,
(d)).

A first major application of the results in Section 5 is presented in Sec-
tion 6. It is shown that (1.35), namely the transformation of a continuous
problem into a discrete one, which is well-posed in the Euclidean metric,
is realized for a wide class of elliptic differential and integral operators, de-
scribed in Section 2.3. The entries of the diagonal matrix D depend on
the order of the operator L. Preconditioning is seen here to be an immedi-
ate consequence of the validity of norm equivalences for Sobolev spaces. It
simply means that the shift in Sobolev scale caused by the operator £ in
(1.30) can be undone by a proper weighting of wavelet coefficients. Diagonal
matrices act in some sense like differential or integral operators much like
classical Bessel potentials.

To bring out the essential mechanism, this is formulated for a possibly
abstract setting. One should look at the examples in Section 2.2 to see what
it means in concrete cases. On the other hand, it is important to note that
the full strength of wavelet bases is actually not always needed. When the
order of the operator L is positive, the weaker concept of frame suffices. This
establishes a strong link to recent, essentially independent, developments
of multilevel preconditioning techniques in a finite element context. Both
lines of development have largely ignored each other. Although the present
discussion is primarily seen from the viewpoint of wavelet analysis, I will
briefly discuss both schools and their interrelation.

While the concepts in Section 6 can also be realized in a finite element
setting, Section 7 confines the discussion to what will be called the ideal
setting, meaning problems formulated on R™ or the torus. As detailed in Sec-
tion 4.2, an extensive machinery of wavelet tools is available and much more
refined properties can be exploited. Last but not least, through marriage
with Fourier techniques such as FFT, this could be a tremendous support of
computational efficiency. Some of the insight into local phenomena gained
in this way can also be expected to help under more general circumstances.
Of course, all these properties are preserved under periodization, so that
wavelets still unfold their full potential for periodic problems.

One further reason for reserving some room for this admittedly restricted
setting is to think of a two-step approach. Exploiting all the benefits of the
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ideal setting, one aims at developing highly efficient techniques that are to
cope with the bulk of computation determined by, say, the spatial dimension
of the domain. This should then justify efforts to treat geometric constraints
entering through boundary conditions separately, hopefully at the expense
of lower-order complexity.

The common ground for all the techniques mentioned in Section 7 is that
the inverse of an elliptic operator is fairly well accessible in wavelet coordin-
ates. This concerns vaguelette techniques, which in the spirit of Section 1.5
(a), aim at diagonalizing the operator £ (see Section 7.2). Several issues
such as the (adaptive) evaluation of vaguelette coefficients, freezing coeffi-
ctent techniques for operators with variable coeflicients and relaxed notions
like energy-pre-wavelets are discussed.

The next step is to consider a class of univariate (periodic) nonlinear evol-
ution model equations (Section 7.7). Several different approaches such as
vaguelette schemes and best bases methods will be discussed. The so-called
pseudo-wavelet approach aims at a systematic development of techniques
for an adaptively controlled accurate application of evolution operators and
nonlinear terms. An important vehicle in this context is the so-called non-
standard form of operators. I will try to point out the difference between
several approaches which are based on a number of very interesting and
fairly unconventional concepts.

These evolution equations are to be viewed as simplified models of more
complex systems like the Stokes and Navier-Stokes equations. In Sec-
tion 7.11 some ways of dealing with corresponding additional difficulties
are discussed. It seems that biorthogonal vaguelette versions combined with
(biorthogonal) compactly supported divergence-free wavelet bases offer an
interesting option, which has not been explored yet.

As mentioned before, a major motivation for the developments in Sec-
tion 7 was to embed problems defined on more general domains into the
ideal setting and then treat boundary conditions separately. Section 8 is
devoted to a brief discussion of several such embedding strategies. I will
focus on three options. The first is to use extension techniques in conjunc-
tion with the multilevel Schwarz schemes described in Section 6.5. This is
particularly tailored to variational formulations of problems involving self-
adjoint operators. An alternative is to correct boundary values by solving
a boundary integral equation. Finally, one can append boundary conditions
with the aid of Lagrange multipliers.

Section 9 deals with pseudo-differential and integral operators. As an
important case, this covers boundary integral equations. This type of prob-
lem is interesting for several reasons. First of all, it naturally came up in
Section 8 in connection with partial differential equations. Second, it poses
several challenges. On one hand, boundary integral formulations frequently
offer physically more adequate formulations and reduce, in the case of exter-
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ior boundary value problems, the discretization of an unbounded domain to
a discretization of a lower-dimensional compact domain. On the other hand,
they have the serious drawback that (in some cases in addition to precondi-
tioning issues) the resulting matrices are dense. However, as indicated by the
example in Section 1.3, such operators have a nearly sparse representation
relative to appropriately chosen wavelet bases. What exactly ‘appropriate’
means, and some ingredients of a rigorous analysis of corresponding compres-
sion techniques will be explained in this section. The issue here is twofold,
namely reducing a matrix to a sparse matrix without losing asymptotical
accuracy of the solution, and the efficient computation of the compressed
matrices at costs that remain proportional to their size. Moreover, when the
operator has negative order (see Section 2.2) preconditioning does require
the full strength of wavelet decompositions. So, in principle, wavelets seem
to be particularly promising for this type of problem. One expects that
they offer a common platform for (i) efficiently applying operators that are
otherwise dense, (ii) preconditioning the linear systems and (iii) facilitating
adaptive strategies for further reducing complexity.

However, the embedding strategies from Section 8 do not apply to closed
surfaces. So appropriate notions of wavelets on manifolds have to be de-
veloped. Discontinuous multi-wavelets have been employed so far. But ac-
cording to the results in Section 6, they are not optimal for preconditioning
operators of order —1. Therefore Section 10 is devoted to the construc-
tion of wavelet bases on manifolds that have all the properties required by
the analysis in Section 9. This rests on two pillars: the characterization of
Sobolev spaces with respect to a partition of the manifold into parametric
images of the unit cube (recall that the classical definition of Sobolev spaces
on manifolds is based on open coverings), and certain biorthogonal wavelet
bases on the unit cube that satisfy special boundary conditions. The con-
struction of such bases, in turn, can be based on the ingredients presented
in Section 4.4. This refers partly to work in progress. Some consequences
with regard to domain decomposition are briefly indicated.

In Section 11 we take up again the issue of adaptivity. The main ob-
jective is to outline a rigorous analysis for a possibly general setting that
covers the previously discussed special cases. Some comments about relat-
ing this to adaptive strategies in the finite element context are included. In
addition, this part should complement the intriguing algorithmic concepts
discussed before. The section concludes with a brief discussion of the rela-
tion between the efficiency of adaptive approximation and Besov regularity
of the solutions of elliptic equations.

Finally, in Section 12 some further interesting directions of current and
perhaps future research are indicated.
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2. The scope of problems

The objective of this section is to put some meat on the skeleton of ideas in
Section 1.5 by identifying first a list of concrete model problems satisfying
(1.29) and (1.30). This requires some preparation.

2.1. Funclion spaces and other preliminaries

It is clear from the discussion in Section 1.5 that certain functional analytic
concepts related to Sobolev spaces play an important role. This section
contains corresponding relevant definitions, notation and conventions.

For any normed linear space S the norm is always denoted by || - ||s. The
adjoint or dual of an operator L is denoted by L£*.

Important examples are L, spaces. For 1 < p < oo (with the usual sup-
norm interpretation for p = co) and for any measure space (€2, du), the space
L,(§2) consists of those measurable functions v such that

i/p
[olzpi0) = ( / lv(w)l”du(:v)) < o0.
Q

For simplicity, we usually write dz instead of du(x), since only the Lebesgue
measure will matter. The case p = 2 is used most often. In this case

| - “%2(9) = (-, ")q, where

(u, v)q = / u(z)o(z) dz
Q

denotes the corresponding standard inner product. Here 2 may be R™ or
a domain in R™ or, more generally, a manifold such as a closed surface.
The latter interpretation is needed when dealing with boundary integral
equations.

Partial derivatives are denoted by 8, or 0, if it is stressed with respect
to which variable it applies. Common multi-index notation is used, that is,
z* =g 28, ol = |Jaa] + - + |ag, for a € Ng, Ng :={0,1,2,3,...}.

Suppose now that 2 C R™ is a domain. We shall always assume that
Q2 is a bounded, open, and connected (at least) Lipschitz domain. This
covers all cases of practical interest. If m is a positive integer, the Sobolev
space W™P((Q)) consists of all functions f € Lp(£2), whose distributional
derivatives 0" f, |v| = m, satisfy

'f’vaVm,p(n) = Z Han”}zp(Q) < o0 (2.1)
lv|l=k

see, for example, Adams (1978). The pth root of (2.1) is the semi-norm for
W™P(QQ), and adding to it || f||1,(q) gives the norm || f|lym.rq) in W™P(Q).
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For the present purposes the most important case is again p = 2, which is
denoted for short as H™(Q) := W™?2(Q). Furthermore, Sobolev spaces with
noninteger index s € R are needed. There are several ways to define them.
For 2 = R" one can use Fourier transforms

fw = [ r@e=vay,

RrR™

and set

Ho®") = {f € La(®") : [ (1+1y")°|f(w)[*dy < oo},

RrR"

where || is the Euclidean norm on R®. When 2 # R", the Lipschitz property
implies that there exist extension operators E that are bounded in H™ for
any m € N. For s > 0 one can define || f||gs(q) = inf{||gllgs@®n) : 9 o= f}-
Alternatively, H*(2) can be defined by interpolation between Lo(§2) and
H™(Q), m > s; see Bergh and Lofstrom (1976), DeVore and Popov (1988a)
and Triebel (1978). When s < 0 one can use duality. For any normed
linear space V, the dual space, consisting of all bounded linear functionals
on V| is denoted by V*. It is a Banach space under the norm ||w|y+ =
SUpP|y|, =1 [w(v)|- Specifically, when @ is a closed manifold (H*(Q))* =
H™3(Q).

We will briefly encounter Besov spaces Bj(Ly(€2)); see again Bergh and
Lofstrom (1976), DeVore and Popov (1988a), DeVore and Sharpley (1993)
and Triebel (1978). They arise by interpolation between L,(2) and W™P(Q).
Recall that H*(2) = B3(L2()).

As mentioned before, lower case boldface letters such as ¢,d will always
denote sequences over some (finite or infinite) index set A. As usual, for the
same range of p as above, we set

1/p
liclle,(a) (Z |Ck|p) -

keA

By convention, the elements of £,(A) will always be viewed as column vec-
tors, that is, cT, c* are rows, the latter indicating complex conjugates when
using the complex field. Analogously, for a matrix M the transpose is M7,
while M* denotes its complex conjugate transpose.

When there is no risk of confusion the reference to the domain or index
set will sometimes be dropped, that is, we write (-,-), H®, fa, etc.
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2.2. A general class of elliptic problems

(a) Scalar elliptic boundary value problems
For 2 C R™, an example of £ in (1.30) is

Lu:=i"" Y aap(2)0*0°u=f onQ, Bu=0 ond, (22)

la),| Bl<mn

where B is a suitable trace operator, and the polynomial

P(E) = Y aap(@)*?
ol |Bl=m

satisfies
P)>6>0, £€R™ zeq. (2.3)

Depending on the regularity of the domain, (1.29) holds with H; = H*(2),
Hy = H°72™(Q) for a certain range of s. An important special case is

—div (A(z)Vu) +a(x)u=fon Q, wu=0on o1, (2.4)

where A(z) is uniformly positive definite and symmetric on Q and for a
vector field v the divergence operator is defined by divv := 377, B_%UJ"

Clearly A = I, a(x) = 0, gives Poisson’s equation with Dirichlet boundary
conditions. Here H; = H}(2) and Hy = H~1(Q) = (H}(R))*. Likewise, one
could take the Helmholtz equation £ = —A+al fora > 0,or L= —A+3-V.
Similarly with £ = A2, H; = HZ(), Hy = H~?(), fourth-order problems
are covered as well.

The special case that L is positive definite and selfadjoint is of particular
interest, that is,

a(u,v) = (Lu,v) (2.5)

is a symmetric bilinear form. Ellipticity here means that

a(-,) ~ - 3 (2.6)

which implies (1.29). Clearly (2.4) falls into this category.

Such problems can be solved approximately with the aid of finite element-
based Galerkin schemes. There are several different problems that arise. For
n > 2 one obtains large linear systems, usually with sparse matrices which,
for instance in the case (2.4), are symmetric positive definite. Thus a major
challenge lies simply in the size of such problems. Since direct solvers based
on matrix factorizations would cause a significant fill-in of nonzero entries
in the factors, and therefore prohibitively limit storage and computing time,
one has to resort to iterative solvers for large problem sizes. Unfortunately,
the condition numbers of the system matrices grow with their size N like
N2m/n Tt is therefore of vital importance to precondition these sytems.
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In fact, an asymptotically optimal scheme would require uniformly bounded
condition numbers.

When L is not selfadjoint, efficient schemes such as preconditioned conjug-
ate gradient (PCG) iterations have to be replaced by more expensive ones,
whose performance is no longer a simple function of the spectral condition
numbers.

Finally, the coefficients in A(z) or a(x) may vary rapidly. On one hand,
this may adversely affect the constants in (1.29). On the other hand, the
resolution of such fluctuations may require too small mesh sizes, so that
questions of homogenization arise. In the following we will primarily address
the first two issues.

(b) Saddle point equations
An important example for a system of partial differential equations is the
Stokes problem

—Au+Vp = f, onf, u=0 on 09, (2.7)

divu = 0,

as a simple model for viscous incompressible flow. The vector valued func-
tion u and the scalar field p represent velocity and pressure of the fluid,
respectively. Obviously, one has to factor the constants from p, for instance
by requiring [ p(z)dz = 0.

Q

The weak formulation of (2.7) requires finding (u,p) € V x M, where

Vi= (H)@)", M =Loo() = {f € Lo(®) S (@) de = o}, (28)

such that
a(u,v) +b(v,p) = (fiv)g, veV
(2.9)
blu,p) = 0, neM,
with
a(u,v) = (Vu,Vv)q, blv,p) = (dive, p)q. (2.10)

So-called mized formulations of (2.4) for a(x) = 0 arise when introducing
the flur 0 := —AVu as a new variable, so that —div(AVu) = f yields a
coupled system of first-order equations

AVuyu = —0, diveo = f,

whose weak formulation is

a(o,7) = b(r,u) = 0, veV = H(div,Q),
(2.11)
~blo,v) = —{(f,v)q, vEM :=Ly(N).



76 W. DAHMEN

Here a(-,-) = (-, )q, b(,-) is defined as before in the Stokes problem, and

H(div,Q) := {7 € (L2())(™: divT € L2(Q)},

endowed with the graph norm ||7| g(giv.0) = (“T”2L2(Q) + ||div 7'||%2(Q))1/2.

Both cases (2.9) and (2.11) can be viewed as an operator equation of the

form (1.30) with
_ (A B
£_<B ; ) (2.12)

and A:V - V* B:V — M* are defined by
(Au,v)q = a(u,v), veV, bl,u)=(Bv,uq, peM.

It is well known that in both cases £ is an isomorphism from H; := V x M
onto Hy := V* x M*, that is, (1.29) is valid (Braess 1997, Brezzi and Fortin
1991, Girault and Raviart 1986), which in this case means that

b
inf sup (v, 1)

>8> 0. (2.13)
weM vev [[vllv ||l m

Note that in the case (2.11) the Galerkin approximation of A is a mass
matriz. Introducing suitable weighted inner products on a high discretiza-
tion level would precondition this part well, which is one possible strategy
for dealing with fluctuating coefficients.

However, the numerical solution of (2.9) or (2.11) now poses additional
difficulties. The operator L is no longer definite. Preconditioning there-
fore requires additional care. Furthermore, the discretizations of V' and M
must be compatible, that is, (2.13) has to hold uniformly in the family of
trial spaces under consideration. Both issues, preconditioning as well as the
construction of compatible trial spaces, will be discussed below.

(¢) Time-dependent problems
Once elliptic problems of the above type can be handled, the next step is to
consider problems of the form
Ou n
E+£u+g(u) = 0, uk)=ulk+l), klez", (2.14)
u(-,0) = up,

where L is an elliptic operator of the form (2.4), and G is a possibly nonlinear
function of u or a first-order derivative of u. Prominent examples are reaction
diffusion equations

ou 02

a = VWU +up, p > 1, v > O, (215)
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or the viscous Burgers equation

ot ox  0x2
which describes the formation of shocks. Several wavelet schemes for this

type of equation will be discussed. Some will also apply to problems such
as the Korteweg-de Vries equations

Ou Ju o3

a, 3 constant, having special soliton solutions (Fornberg and Whitham 1978).

(2.16)

(d) Boundary integral equations

Many classical partial differential equations can be transformed into bound-
ary integral equations. This includes the Lamé-Navier equations of linear-
ized, three-dimensional elasticity, (Wendland 1987), the oblique derivative
problem (Michlin 1965), arising in physical geodesy, the exterior Stokes flow
(Ladyshenskaya 1969); see Schneider (1995) for a brief overview. Here it
suffices to describe a simple example that exhibits the principal features of
this class of problem. Consider the boundary value problem

AU=0,0onQ, 9U=f onl :=0Q, (2.18)

where (2 is a bounded domain in R® and 8, denotes the derivative in the
direction of the outer normal to I". It is well known that this boundary value
problem, which arises, for instance, in the computation of electrostatic fields,
is equivalent to the following integral equation of second kind provided by
the so-called indirect method

Lu=f, (2.19)
where £ = %I + K and
T _
(Ku)(z) = 4—17; / ’%iTlfj)u(y) ds,. (2.20)
r

Here v, denotes the exterior normal of I' at y. K is called double layer
potential. For smooth I' the operator K is compact on Ly(T') so that the
principal symbol of £ is 1/2. Thus (1.29) holds with Hy = Hy = Lo(T)
and K is a zero order operator. Clearly, denoting by G(z — y) := ﬁ_—yl

the fundamental solution of (2.18), one has Ku(z) = [ 0, ,G(x — y)u(y) dSy
r
and the solution U of (2.18) can be obtained by evaluating U(z) = [ G(z —
r

y)u(y) dsy, where u is the solution of (2.19).
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This approach is particularly tempting when (2.19) is to be solved on the
exterior R3 \  of some bounded domain. In this case one has to append
certain radiation conditions at infinity to determine the solution uniquely.

The so-called direct method arises in connection with transmission prob-
lems and is well suited to dealing with other boundary conditions. Problem
(2.18) subject to Dirichlet conditions U = f on I' is known to be equivalent
to

Lu=Vu= (%I - IC) f, (2.21)

where

Vo) = [ 0 dy 2.2
r

is the single layer potential. In this case (1.29) can be shown to hold for
H; = H™Y2(I") and Hy = H'/?(T"), and £ has order minus one.

In both cases the unique solvability of (1.30) and (1.29) can be established
along the following lines, which work for a much wider class of pseudo-
differential operators. In fact, for smooth I' these operators are classical
pseudo-differential operators characterized by their symbol; see Hildebrandt
and Wienholtz (1964), Kumano-go (1981). Equation (1.29) follows from the
boundedness of £, its injectivity on Hy, and coercivity of the principal part
of its symbol.

The advantages of the approach are obvious. A 3D discretization of a
possibly unbounded domain is reduced to a 2D discretization of a compact
domain. One can also argue that in many cases the integral formulation is
physically more adequate.

On the other hand, there are serious drawbacks. If the order of the op-
erator L is different from zero, as in the case of the single layer potential
operator, the need for preconditioning remains. In addition, conventional
discretizations of the integral operators lead to dense matrices, which is per-
haps the most severe obstruction to the use of these concepts for realistic
problem sizes N. Appropriate wavelet bases will be seen to realize both
desired effects (b), (¢) in Section 1.5 for this class of problem.

2.3. A reference class of problems

The examples in Section 2.2 illustrate the variety of problems that will be
discussed in this paper. To get some structure into the diversity of existing
studies of various special cases, I stress the fact that certain results, mainly
concerned with (b) in Section 1.5, actually hold in remarkable generality.
Presenting them in this generality will help to bring out what really mat-
ters. In all the above examples the operator £ satisfies (1.29) where Hy, H,
are Sobolev spaces or products of such. In order to keep the discussion
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homogeneous, we will confine the formulation of a model class of problems
to the scalar case. So we assume that there exist some positive constants
c1, ¢ < oo such that

cllCull -+ < Jullge < collCullg-, (2.23)

where H* stands for a suitable (subspace of a) Sobolev space (for instance,
determined by homogeneous boundary conditions) and H~* for its dual
space. The underlaying domain may be a bounded domain in R”, R" itself
or a more general manifold such as a closed surface according to the above
examples. Thus the problem

Lu=f (2.24)

has for every f € H™! a unique solution.
The analysis that follows will also cover operators with global Schwartz
kernel

Lu = /K(,:L')u(x) dez,
r

as considered in Section 2.2. As in the above examples, K will always be
assumed to be smooth off the diagonal x = y. Moreover, it is to satisfy the
following asymptotic estimates, which obviously hold in the above cases as
well,

agagK(x,y)\ < dist(z, y) " (H2HelI8), (2.25)

where r = 2t is the order of the operator.

3. Multiscale decompositions of refinable spaces

In Section 1.5 the transform point of view has been stressed. As indic-
ated there the corresponding numerical schemes can be viewed as Galerkin
or, more generally, (generalized) Petrov-Galerkin schemes. The point is
that these schemes are always seen in connection with a whole ascending
sequence of trial spaces, often referred to as multiresolution analysis. This
permits the interaction of different scales of discretizations. In basis or trans-
form oriented methods this is effected with the aid of appropriate multiscale
bases of hierarchical type. Following Carnicer, Dahmen and Pena (1996),
Dahmen (1994), Dahmen (1996) and Dahmen (1995) a general framework
of multiresolution and multiscale decompositions of trial spaces is described
next in a form which will later host all the required specializations. The
examples in Sections 1.2 and 1.4 can be used as a conceptual as well as a
notational orientation.
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3.1. Multiresolution

The concept of multiresolution analysis plays a central role in the context
of classical wavelets on R™. The anticipated applications here require a
suitable generalization. In the spirit of Section 1.5, let H be a Hilbert space
with inner product (-,-) and associated norm || - || = || - |z = (-,-)}/2. A
multiresolution sequence S = {S;},cn, consists of nested closed subspaces
S; C H whose union is dense in H

Sj - Sj+1, closy ( U S]> = H. (3.1)

J€ENg
Define for any countable subset ® C H
S(®) := closy(span{®}),

the closure of the linear span of ®. In all cases of practical interest the
spaces S; have the form

Sj = S(‘I)j), ‘I’j = {(,bjyk ke Aj} (3.2)

for some (possibly infinite) index set A, where {®;} = {®;};en, is uniformly
stable in the sense that (see (1.23))

lclleaa,) ~ €7@l e (3.3)

The ®; will sometimes be called generator bases or single-scale bases. The
elements ¢; typically have good localization properties such as compact
supports whose size depends on the scale j.

An arbitrary but fixed highest level of discretization will usually be de-
noted by J, and

Njy:=#Ay
abbreviates the dimension of the corresponding space S(® ).

Examples are H = Ly([0, 1]) and ¢;x the box or tent functions (see Sec-
tions 1.2 and 1.4) with A; = {0,...,2? =1} or A; = {0,...,27}, respectively.

Two-scale relations
Nestedness of the spaces S(®;) combined with (3.3) means that every ¢, €
S(®;) possesses an expansion

Gik= D, ™ pPit1

l€Aj1
with a mask or filter sequence mfc = {m{,k}leAHl € €2(Aj41); recall (1.2)
and (1.19). In our compact notation this can be rewritten as

oT = a7, My, (3.4)
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where the refinement matrix M, o contains the mfc as columns.

I will make frequent use of this notation, for two reasons. First, it saves
several layers of indices. Second, it clearly brings out the conceptual simil-
arities shared by all the technically different subsequent specializations. On
the other hand, a word of warning is also appropriate. The special features
of the actual implementation remain somewhat obscure. For instance, it will
by no means always be necessary to assemble the complete matrices M.
In most cases its application to a vector amounts to applying local filters.
Keeping this in mind, I still grant priority to convenience.

To illustrate (3.4), recall from (1.2) that the refinement matrix for the
box functions is the 271 x 27 matrix

% 0 0 0
% 0 0
0 % 0
M, = ], 3.5
j 0 % 0 (3.5)
0 % 0
0 0 —%
0 0 0 %

whose dependence on j concerns only its size. Likewise, (1.19) gives the
(2741 — 1) x (27 — 1) matrix

1
73 0 0
1 1 9
22 2\1/5
0 75 0
o L 1 0
2v/2  2vV2
M;o = 0 0 (3.6)
0
1 1
22 2\1/5
0 0 7
0 1

S
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3.2. Stable completions

Since the union of S is dense in H, a basis for H can be assembled from func-
tions which span complements between any two successive trial spaces. One
may think of orthogonal complements as in Section 1.2 or of the hierarchical
complements in Section 1.4 induced by Lagrange interpolation (1.21). De-
pending on the case at hand, different choices will be seen to be preferable.
So at this point we follow Carnicer et al. (1996) and keep the specific choices
open. Thus one looks for collections ¥; = {1; 1 : k € V;} C S(®;41), such
that

S(®j41) = S(®;) @ 5(¥;), (3.7)
and {®; U ¥;} is still uniformly stable in the sense of (3.3). Like refinabil-
ity, such decompositions may be expressed equivalently in terms of matriz
relations that will provide a convenient algebraic platform for a unified treat-

ment of subsequent specializations. As above, (3.7) implies that there exists
some matrix M, ; such that

vl = T, M. (3.8)
It is easy to see that (3.7) is equivalent to the fact that the operator

M; = (Mj 0, Mj1),
defined by Mj (S) = Mj,oc+M]-,1d, forc e fg(Aj), de ZQ(Vj), is invertible
as a mapping from £2(A;) x €2(V;) onto £2(Aj1). Moreover, {®; U ¥,} is
uniformly stable if and only if

IM [, IM; ) = 0(1), jeN, (3.9)
where || - || is the spectral norm (Carnicer et al. 1996).
It is convenient to block Mj_1 as
M =G = (%?) : (3.10)
so that
I=M;G; =M,;0Gjo+M;1G; (3.11)
and
GjeM; o =601, e, €{0,1}. (3.12)

Of course, those who are familiar with wavelets recognize in (3.11) the
classical filter relations. The matrix M; describes a change of bases and
hence the reverse change Gj, that is, ;41 can be expressed in terms of the
coarse scale basis ®; and the complement basis ¥;. One readily concludes
from (3.4), (3.8) and (3.11) the reconstruction relation

QJT_H = ‘-‘D;I‘Gjyo + \IIJTGj)l. (3.13)
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In general it may be difficult to identify the inverse G;, or, better, to ar-
range M, 1 in such a way that also G; has a nice structure such as sparseness.
One rather expects that when M; is sparse, G; will be full. In some sense,
the art of wavelet construction can be viewed as finding the exceptions.

It is again instructive to recall the examples in Section 1. The rela-
tion (1.3), defining the Haar wavelet, corresponds to the 27+ x 27 matrix

‘%1 0 0 ... 0
~7 0 0
0 5 0
M;, = 0 % 0 . (3.14)
0 -5 0
0 0 5
0 0 0 -
Since the Haar system is orthonormal, one simply has in this case
G;=MJ, [Myl=|Mj'|=1. (3.15)
Adding and subtracting (1.2) and (1.3), one could also deduce directly that
1 1

Gir1,2k = \/i((ﬁj,k +9h), Girrzksr = \/i(‘bj,k —yi).

For the hierarchical basis from Section 1.4 one obtains the (2/+! — 1) x 27
matrix

10
0 0
01

o O O

Mjp=1]: @ ¢ N (3.16)

o o O
o O e
- o O

Moreover, since by (1.19) and (1.22),
birrak = V2hik — % (Dj+1,2k—-1 + Pjr1,2k41)
= V28— % (ip-1+¥jk), k=1,...,27 -1,
Gir10 = V2¢i0— %lbj,O» Pjt1,05+1 = \/§¢j,21 — %%,2]‘—1,
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while
Git12k+1 = Vjk, k=0,...,27 — 1,

one readily identifies, in view of (3.13), the inverse G; as

0v2 0 0 0 ... 0 0
0 0 0 V2 0 S0 0
Gjo=|: : : S (3.17)
V2 0 0 0
0o 0 ... 0 0 v2 0
and
1 —% 0 01
Gj1= . (3.18)
_% 0
—3 1

Again one trivially has ||M;|], ||G;|| = O(1), j € Ng, so that the hierarch-
ical complement bases are also uniformly stable in the above sense.

Remark 3.1 Evidently, the identification of a complement basis (3.7) is
equivalent to completing a given refinement matrix M, to an invertible
mapping. Any M;; for which the completed matrix M; satisfies (3.9) will
be called stable completion of M; .

3.83. Multiscale bases

Repeating the decomposition (3.7), one can write each space S(®;) as a
sum of complement spaces

J-1
S(2) = 5(20) P S(L,).

J=0

Accordingly, g; € S(®;) can be expanded in single-scale form with respect
to &5 as

gs = ®Tc’, (3.19)
as well as in multiscale form as

g5 =03 +9fd’ + ...+ 9T 4/, (3.20)
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with respect to the multiscale basis
v = | U, (3.21)
Hence, by the denseness of S (3.1), the union

o
Ti=0;U | U= {yr: eV} (3.22)
J=jo
is a candidate for a basis for the whole space H. Here jy is some fixed
coarsest level (which, for simplicity, will usually be assumed to be jo = 0).
We will always use the convention

Vi=A,UV_, (3.23)
where
A= Bj, Y= Pjgk, A= (Jo, k), V_:={(j,k) ke Vi, j € No}.

In principle, there is no need to consider only subsets ¥” of ¥ defined by
levelwise truncation. Instead one can select arbitrary subsets A C V to form
trial spaces

Spa = 8S(Wa), WYa:={v: A€ A},

to discretize (1.30), say. According to (d) in Section 1.5, the selection of A,
depending on a particular problem at hand, is a very natural way of steering
adaptivity. This is perhaps one of the most promising aspects of multiscale
basis-oriented methods in comparison with conventional discretizations.

3.4. Multiscale transformations

On the other hand, working with arbitrary subsets A C V will be seen to
cause practical problems that should not be underestimated. Adequate data
structures have yet to be developed. Things are much simpler for the special
case

Aj={deV: |\<J} (3.24)
where
|/\|= ] if 1[JA€‘I/j,
jo—1 if Ae Ay,

which deserves some special attention.

To this end, both coefficient vectors ¢ and d appearing in (3.19), (3.20),
respectively, convey different information. While ¢/ in (3.19) indicates in
many cases, for instance, the geometrical location of the graph of g, the d’
in (3.20) have the character of differences. While usually all the entries of ¢/
are needed to represent g accurately, many of the entries in d may be small,
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and replacing some of them by zero may still permit a sufficiently accurate
approximation to g; (recall (1.9) in Section 1.2). On the other hand, the
pointwise evaluation of g; is much simpler in the single-scale form (3.19).
These questions will be encountered repeatedly in the course of subsequent
developments.

To exploit the benefits of both representations, one needs a mechanism
to convert one into the other. These transformations all have a common
pyramid structure, which is explained next. Since by (3.4) and (3.8},

@;rcj + \Il;rdj = @};1 (Mj,Ocj + Mj,ldj) ;

the transformation

Ty;:d—c (3.25)
is schematically given by
My M Mj_1p0
CO — Cl — C2 _— e e C
MO,l Ml,l MJ_LI (326)
/" /! S /
dO dl d2 dJ—l

To express this in terms of matrix multiplications, define for 7 < J the

#® ;5 x #P; matrix
—(M; 0
TJ,] = ( 0 I ) 4

where I is the identity block of size #®; — #®;41. Then (3.26) becomes
T;=Tss_1 T (3.27)
As for the inverse transformation, since, by (3.13),
(I);f+lcj+1 - q’;-T(Gj,OCj+1) + ‘I’J’I‘(Gj,lcj+1) - q)Jch + \I/;Fdj,

T}l is realized by

Gi-1p0 G20 Go,0
¢/ - It - 7?2 ... -
G111 Gj_21 Go,1 (3.28)
N \ N N\
dJ—l dJ—2 dO,

which, of course, has a similar product structure as (3.27) involving the
blocks G;.
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Complexity of multiscale transformations

Let us comment first on the complexity of the transformations T, T;l. In
the above two examples (see (3.5), (3.6), (3.14), (3.16)) the matrices M;
and G; have only finitely many nonzero entries in each column and row.
Thus the operations that take ¢/,d’ into ¢/*! as well as ¢/*! into ¢7,d?
require the order of #A;,, operations uniformly in j. Since in both cases
#Aj11/#A; ~ o > 1 (here p = 2), one concludes that the execution of
T; and T requires the order of #A; = dim S(®;) operations uniformly
in J € N. Note that one need not assemble the global transformation T ;
but rather apply local filters like (1.2) and (1.19) which correspond to the
successive application of the factors T ; ;. This pattern holds in much greater
generality, as long as #A,/#A;_1 > ¢ > 1, and the matrices M;, G; stay
uniformly sparse. By this we mean that the columns (rows) of M;, (G;)
contain only a uniformly bounded number of nonzero entries. Thus one may
record the following for later use.

Remark 3.2 When all M; are uniformly sparse and the cardinality of ®;
grows geometrically, then the application of T ; requires O(#A ;) operations.
Under the same assumptions on the G; an analogous statement holds for
the inverse transformation T;l.

Let us see next how the transformation T ; may enter a numerical scheme
for the approximate solution of (1.30). Suppose one wants to employ a
Galerkin scheme based on S(®;), that is, one has to compute uy € S(®)
satisfying

(Lug,v) ={f,v), veSDy). (3.29)

If uy is to be represented in single-scale form uy = (c’/)T®, this amounts
to solving the linear system

(L2, @) c! = (f,0,)T (3.30)

for the unknown coefficient vector ¢/. As pointed out in Section 2.2, the
matrix Ag, = (LD, P 7)T may be sparse but increasingly ill-conditioned
when J grows. In the special situation of Section 1.4 it has been observed
that the stiffness matrix relative to the hierarchical basis has more favourable
properties. One readily checks that, in general, the stiffness matrix Ays :=
(LY, /)T relative to the multiscale basis ¥/ (see (3.21)) has the form

Ay =TYAs,T;. (3.31)
Hence Ay is a principal section of the (infinite) matrix
Ay = (LT, 0)T, (3.32)

which is often called standard representation of L.
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Let us assume that £ is a differential operator, so that, when ®; con-
sists of compactly supported functions, Ag, is sparse and has only O(Ny)
nonvanishing entries, where, as before, Ny = #A ;. Hence its accurate com-
putation requires only the order of N; operations and storage. Since the
basis ¥/ contains functions defined on coarse levels, basis functions from
different scales will generally interact, so that Ag.s will generally be much
denser. However, in the context of iterative schemes, only the application
of a matrix to a vector matters. By (3.31), the application of Ags to a
vector reduces to applying successively T, Ag, and T?, each requiring, on
account of Remark 3.2, the order of N; operations.

In the above form these multiscale transformations are very efficient rel-
ative to the complexity of the full space S(®;). At this point, though, it is
not clear how to deal with spaces S(¥,) spanned by subsets of ¥,

Stability and biorthogonality

There is obviously a continuum of possible complement bases ¥; that yield
decompositions (3.7), and the question arises whether they are all equally
suitable. The Haar basis corresponds to taking orthogonal complements
relative to the £s-inner product, while the hierarchical basis spans orthogonal
complements relative to the inner product a(u,v) = (u/,v’)[g ) in Hi([0,1]).
Thus orthogonal complements appear to be a canonical choice. However,
they are frequently not easy to realize. For instance, any stable completion
for (3.6), which induces orthogonal complements, is either dense or gives
rise to dense inverses G;. Moreover, we will encounter situations where
orthogonal complements are actually not the best choice.

At any rate, the qualification of the complement bases ¥; will be seen to
depend crucially on the topological properties of their union ¥. Aside from
efficiency, a first reasonable constraint on the choice of the ¥; is the stability
of the multiscale transformations; see, for example, Dahmen (1994, 1996).

Theorem 3.3 The transformations T ; are well conditioned in the sense
that

ITs), 1T = 0(1), JEeN, (3.33)

if and only if the collection ¥, defined by (3.22), is a Riesz basis of H. This
means that every f € H has unique expansions

F= (000 = D (£, 020 (3.34)

AEV AV
where ¥ C H is a biorthogonal Riesz basis, that is,
(O, 0) =1, (3.35)
such that
£z~ I W) lep(wy ~ 1Fs B)llea(w)- (3.36)
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Thus biorthogonality is as far as one can deviate from orthogonality. It will
be seen that the framework of biorthogonal bases offers a much more flexible
setting for constructing multiscale bases such that the matrices M; as well
as their inverses G; are uniformly sparse and give rise to well-conditioned
multiscale transformations. Moreover, several schemes that have originally
been formulated for orthogonal wavelets (at the expense of infinite although
decaying filters) can be adapted to the biorthogonal setting with better
localization in physical space.

Remark 3.4 Biorthogonality came out as a necessary condition. In gen-
eral, it is not quite a sufficient condition for the Riesz basis property (3.36).
In fact, as observed by Meyer (1994), not every Schauder basis in a separable
Hilbert space is a Riesz basis. Additional conditions ensuring (3.36) will be
discussed later.

3.5. Stable completions continued

Constructing a stable completion in the sense of Section 3.2 does not yet
guarantee that a collection ¥ of the form (3.22) is a Riesz basis in H. Since
in general we cannot resort to Fourier techniques, other tools are needed. As
we have seen in Sections 1.2 and 1.4, sometimes certain stable completions
can be found that may not yet have the desired form. For instance, the
hierarchical bases in Sections 1.4 and 4.1 are not Riesz bases. In such cases
a simple device will help, that allows one to modify the complement bases
(Carnicer et al. 1996). It will have several applications later. The first
important observation is that, once some stable completion is known, all
others can be parametrized as follows.

Proposition 3.5 Suppose that ®; are uniformly stable with refinement
matrices Mo and let M, ; be some (uniformly) stable completion of Mj .

Let G; := (g"l’) denote the inverse of M; = (M, M, 1). Then M; is also
I
a stable completion of Mg, if and only if there exist
Lj : 6(V;) = b(8;), Kj:£(V;) = £(V))
such that L;, K, Kj_1 are uniformly bounded as operators and
Mj,l = Mj,()Lj + Mj,lKj. (3.37)
Moreover, the inverse G; of M; = (M;0, M, 1) is given by
Gj,o = Gj,() — LjKj_IGj,l, Gj,l = Kj—léj,l. (3.38)
Thus, given ijl, varying L; and K; produces a whole family of fur-

ther stable completions and corresponding decompositions of the spaces
S(®;). The special case K; = I covers the lifting scheme proposed by
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Sweldens (1996, 1997). In this case one has
UT = @] M1 = 3], \ MjoL; + 8], | M, = ®TL + ¥,

j+1 j+1
that is, in terms of individual functions, one has
Yk = Z (Lj)ix®s1 + JJj,k- (3.39)
lEA]'

Thus the new wavelet 1; 1, is obtained from the initial wavelet T/V)j,k by adding
a linear combination of coarse scale generating functions.
Now the task remains to pick from the above family of stable completions
a certain desired one. Specifically, we will have to identify stable completions
associated with linear projectors of the form (-, Z;)®; where (®;,Z;) =1L
In fact, Carnicer et al. (1996) have shown that

M1 = (I—M;o(®j41,55)T) Myt (3.40)
are also stable completions with
Gjo=Gjo+ (®j+1,5)™,1Gj1, Gj1=Gj1. (3.41)
This obviously corresponds to the case K; =1 and
Lj = —(®j+1,5;) M. (3.42)

To see the relevance of this latter observation in the present context, let
forany ACV

Wp = {yh: A€ A} (3.43)
If ¥ and ¥ are biorthogonal collections (3.35), then
Qav = (v, Tp) Ty,  Qhv:= (v,Tp) Ty, (3.44)

are projectors onto the spaces S(¥y ), S (\il A), respectively, which are adjoints
of each other. In particular, for A = A; we simply write Q; = Q4.

Remark 3.6 If ¥ and ¥ are biorthogonal, then
QaQj =Qa when AC Acv. (3.45)

If in addition (3.36) holds, then the Q4,Q} are uniformly bounded in H,
AcCV.

Suppose now that the desired biorthogonal multiscale bases are not yet
known. Projectors can be also represented with respect to the basis ®; of
S(®;) = S(W). So let

Qv = (v, ®;)®;, (3.46)
where
(®;,9;) =1, (347)
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for some ®; C S(¥7). We will see next what (3.45) means for the ®;.

Remark 3.7 The ¢); defined by (3.46) satisfy (3. 45) if and only if the
collection ¢I> is refinable, that is, there exists a matrix MJ o such that

o7 = o7 1M 0, (3.48)
and

M; oMo =1 (3.49)

The key to constructing biorthogonal wavelet bases is the following ob-
servation (Carnicer et al. 1996). The point is that if dual pairs of refinable
generator bases ®;, ®; satisfying (3.47) are given and some initial stable
completion is known, then biorthogonal wavelets can easily be obtained as
follows. One infers from (3.40) and (3.41) the following.

Proposition 3.8 Under the assumptions of Proposition 3.5,

M = (T— M;M;,) M, (3.50)
are also stable completions with
Gjo =M, Gj1=G;1. (3.51)
Moreover, 1\7[]-,1 = Gj, is a stable completion of 1\~/Ij,0 and the collections
¥, ¥ obtained from
vl =0l My, 97 =& M;,, (3.52)

by (3.22), are biorthogonal.

Note that when M, G; and M; ¢ are sparse, then the biorthogonal wave-
lets in ¥ and ¥ have compact support.

4. Examples

The objective of this section is to identify several specializations of the set-
ting described in Section 3, which will be needed later.

4.1. Hierarchical bases

The first example concerns the bivariate counterpart to the construction in
Section 1.4. It has attracted considerable attention in connection with the
hierarchical bases preconditioner (Yserentant 1986).

Suppose € is a bounded polygonal domain in R? and 7; is some trian-
gulation of Q. This means the union of triangles in 7y agrees with § and
the intersection of any two different triangles 7,7’ € 7y is either empty or a
common vertex or a common edge. A sequence of triangulations 7; is then
obtained by subdividing each T € 7;_; into four congruent triangles. With
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each 7; we associate the space S; of continuous piecewise linear functions
on . Thus, as in the univariate case (see Section 1.4), tent functions form
a basis for S;. In fact, denoting by ¢, 1 the unique piecewise linear function
which has the value 27 at the vertex k of 7; while vanishing at all other
vertices, one can show that the corresponding collections ®; are uniformly
stable (3.3); see, for instance, Oswald (1990). It is clear that the union of
the S(®,) is dense in H = Ly(2).

The hierarchical bases are obtained by adding to ®; just those basis func-
tions on the next level that correspond to the new vertices at the midpoints
of the edges in 7;. Thus, denoting by A; the vertices in 7; and by V; the
midpoints of the edges in 7; or, equivalently, V; = A1 \ Aj, and calling
Ntk for k € Aj the set of neighbouring vertices of k in Aj41, one has

Gk = > 277715 k(M)bjr1m, k€A, (4.1)
mE{k}U./\/'j_*_lyk

that is, the entries of M are given by

%, m =k,
(M;.0) ik = 2797 gjk(m) = %, m € Nji1k, (42)
0, else.
Since
Yik = Oj+1k kEV; (4.3)
one has the completion
(Mj,l)m’k =0mk, MEAN; 1, keEV; (4.4)

On the other hand, since also for m € A; one has N1, C V;, (4.1) and
(4.3) imply

Gjtim = 205m — D %%’,k, (4.5)
keENj11,m
so that in this case we infer from (3.13)
(Gj,o)km =20km, M€ N, kKEA (4.6)
and ~
—%, mEAj,kE./\/jH,m,
(Gjkm =19 Okm> k,meV;, (4.7)

0, else.
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Since obviously {|M;||, |G;|| = O(1), j € N, the Mj; 1, defined by (4.4), are
indeed uniformly stable completions.
However, note that

S(¥;) = (Lj+1 — L;j)S(®j41) (4.8)
where the L; are the interpolation projectors defined by
Lif =Y 27 f(k)ojx-

kGAj
Hence the basis ¥ obtained in this way (see (3.22)) has no dual in Ly(Q)
and is therefore not a Riesz basis. However, it will serve as a convenient

initial stable completion in the sense of Proposition 3.8. Some consequences
of these facts will be discussed later in connection with preconditioning.

4.2. Wavelets on R™

The construction of wavelet bases is best understood for H = Ly(R), where

the notion of multiresolution analysis has originated from Mallat (1989),
Meyer (1990) and Daubechies (1988).

Stationary multiresolution
Let us first consider the univariate case n = 1. Suppose that ¢ € Lo(R) has
stable shifts

lellez ~ || D cud(- — k) (4.9)
kezZ L2(R)
and is refinable, that is, there exists a mask a € ¢3(Z) such that
z) = Z ar®(2z — k), z € R, almost everywhere. (4.10)

kez

Hence the collections
;= {pjp = 2%¢(2 - —k) : k € 2}

are uniformly stable (3.3) and satisfy (3.4) with Mo = Mg = (a;—2k)1,kez-
Thus the refinement matrices are stationary, that is, they are independent
of the scale 5 and the spatial location k. The examples from Sections 1.2
and 1.4 are obviously obtained by restricting collections ®; of this type
to [0,1]. The function ¢ is often called scaling function or generator of
the multiresolution sequence S = {S(®;)} ez, which is known to be dense
in Lo(R); see, for example, de Boor, DeVore and Ron (1993) and Jia and
Micchelli (1991).

Time-frequency analysis and Fourier techniques have been an indispens-
ible source of construction tools. It is well known (de Boor et al. 1993,
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Daubechies 1992, Mallat 1989, Jia and Micchelli 1991) that, in terms of the
Fourier transform, stability (4.9) is equivalent to

3 Iy +27k)* > ¢ >0, (4.11)
kezZ

while the refinement relation (4.10) reads

$(y) = 2" a(e™/*)(y/2). (4.12)
The Laurent polynomial

a(z) = Z arz®

kez

is called the symbol of the mask a. Since under the present assumptions ¢§
is continuous, reiteration of (4.12) yields

oo
oy) = {H (27a(e=2™Y)) } $(0), (4.13)
j=1

where the product converges uniformly on compact sets so that we always
have ¢(0) # 0. Thus we may assume that ¢ is normalized to ¢(0) = 1.

An important special case arises when the shifts ¢(- — k) are orthonormal
so that (4.9) becomes an equality. An example is the scaling function (see
Daubechies (1992, page 137))

1, ly| < 2m/3,
b(y) = cos (Fu(Elyl - 1)), 2r/3 <yl <4n/3, (4.14)
0, otherwise,

where v is a smooth function satisfying

Another interesting example is

$ly) =2+ (1 — e ¥)q(y), (4.15)

where the trigonometric polynomial ¢ is chosen, so that the shifts ¢(-—k), k €
Z are orthonormal and

d -
d_yl¢ ly=0= 604, 1=0,...,d—1.

This latter condition means that

/x’qs(z) dz=6p5 1=0,...,d—1, (4.16)
R
that is, the scaling function ¢ also has certain vanishing moments. Using
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essentially the same Taylor expansion argument as in Section 1.3, condition
(4.16) implies that, for smooth f, one has (f, ¢ x)r ~ 27/2f(277k). In fact,
one can show that, for instance,

Y @RI - k) — F27D)| S 277 fllwaco (4.17)

kez

so that the expansion Y ¢, f(277k)¢(27z — k) almost interpolates f. While
¢ from (4.14) has global support, the support width of ¢ from (4.15) is 3d—1
(Daubechies 1992, page 258).
The now famous scaling functions ¢ with orthonormal shifts of smaller
support (of width 2d—1) have been constructed by Daubechies (1988, 1992).
When the shifts of ¢ are orthonormal, it can be verified that the shifts of

$(@) = Y (~1)Fer_kp(2z — k) (4.18)

kEZ

form an orthonormal basis of the orthogonal complement of S(®¢) in S(®,),
so that the corresponding ;; constitute an orthonormal basis for L2(R).
The function ¢ from (4.14) gives rise to the Meyer wavelet (Meyer 1990)
which has extremely good localization in Fourier space but has rather slow
decay in physical space. The wavelets for (4.15) are called coiflets and will
be referred to later again.

In general one can say that QAS and 1/3 act like low pass and band pass filters.
For an extensive discussion of this background see Daubechies (1992).

However, orthonormality will merely be viewed as a special case of the
more flexible concept of biorthogonality that came up in Section 3.4; see
Cohen, Daubechies and Feauveau (1992).

Dual pairs _
The scaling functions ¢, ¢ are said to form a dual pair if

6.8~ B)x:= [$@)da—Rdo=op, kez  (419)
R

We will sometimes refer to ¢ and ¢ as primal and dual generator, respect-
ively. It is easy to see that compact support of ¢ and ¢ implies that the
masks a and & have finite support and that (4.19) implies stability (4.9).
Moreover, it is known that the functions

W) = Y (-Dra 192 — k), $(2) = Y (-1 xd(2z— k) (4.20)

kez kez
satisfy

<¢a"Z( - k)>1R = <(};,1/)( - k)>IR = 0’ <¢"¢;( - k»R = 60,]0; ke Z, (421)
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which obviously covers (4.18) as a special case. Observe next that straight-
forward computations confirm that the relations (4.19) and (4.21) are equi-
valent to

( a(z) a(-2) > ( a(z) Iz(z) ) _ ( 40 ) (4.22)
b(z) b(—z) a(=z) b(—2) 0 4

This can be used for the construction of the dual generator ¢. Given the
mask a one can determine a satisfying the first relation in (4.22) and then
show that the product (4.13) with &, instead of a, is the Fourier transform
of an Lo-function.

One easily deduces from (4.10) and (4.21) that for ¥; := {¢;x : k € Z},
W, := {1, : k € Z} the collections

Ui=0 |JU;, T:=%) Y (4.23)
720 120

are biorthogonal.
To relate this to the discussion in Section 3.2, note that with by :=
(~1)*ay_y, b = (=1)*a;_; the bi-infinite matrix M; 1 =My := (b—ok)1kez
is a stable completion of My above and that in this case (see Proposition

3.8),
Go =M = <(:ll—2k)

G =Mj = (Z:)l—2k) (4.24)

klez’ kilez’

B-splines as primal generators give rise to an important class of dual
pairs where both generators have compact support. Let |z| ([z]) denote
the largest (smallest) integer less (greater) than or equal to x, and define
Na = X[o,1) * - - - * X[o,1) as the d-fold convolution of the box function (1.1).
Then, for

_a\d
¢ =qd:= Ny ( + HJ) , Na(y) = (1 —° ) : (4.25)

iy
(4.10) becomes
4] .
ad(z) = 21‘d(k . [g])m(zx—k)- (4.26)
w=—T4)

Cohen et al. (1992) have shown that for every d, de N, d>d, d+d even,
there exists a compactly supported scaling function , ;¢ such that (44, ; ;¢)

form a dual pair. The role of the parameters d, d will be pointed out below.
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Polynomial exactness
It is remarkable that in the present stationary setting the refinement equa-
tion (4.12) has further important consequences. In fact, since, by (4.12),

P(2mk2™) = {H (2_1a(e—i2"_j2”)>} d(27k),
j=1
letting n tend to infinity and applying the Riemann-Lebesgue lemma yields

d(2rk) =0, kez\ {0} (4.27)

By the Poisson summation formula, this means that (Cavaretta, Dahmen
and Micchelli 1991)

1= z oz —k), ze€R. (4.28)

kez

Similarly, a somewhat refined argument shows that ¢ € H"(R) implies
oW@2rk)y=0, kez\{0}, [=0,...,r (4.29)

(Cavaretta et al. 1991) so that Poisson’s summation formula again implies
that, for any polynomial p of degree at most r, there exists some polynomial
q of lower degree such that

p(z) = p(k)o(z — k) + q(x). (4.30)
kez

In particular, when the scaling function ¢ also has vanishing moments
(4.16), then the polynomial g can be shown to vanish. Combining this poly-
nomial reproduction property with arguments from the proof of Proposition
5.1 below yields estimates of the form (4.17) above. The fact that shifts of
¢ represent polynomials of degree r exactly is reflected by the fact that the

symbol a(z) contains a power of (1 + z), that is
a(z) = (1 + 2)"q(2) (4.31)
where g(1) = 277 (Daubechies 1992). .
Returning to the above family (4¢, ; ;¢) of dual pairs, the parameters d, d
are exactly the respective orders of polynomial reproduction. Thus (4.19)

yields
T

o= Y () ga( — K)rad(@—k), r=0,...,d—1,

kez

" = Z((‘)r,m('—k)>1kd,g¢~5($—k), r=0,...,d—1,

kez

(4.32)

which has two important consequences. On one hand, as indicated above,
the order of polynomial reproduction governs the approximation power of
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the spaces S(®;); see, for instance, Cavaretta et al. (1991). This will be
established later in somewhat greater generality. Here we mention first the
following important further implication.

Moment conditions
As an immediate consequence of (4.21) and (4.32), we state that

=
=

3 (4.33)
when 1,7 are the wavelets (4.20) relative to the dual pair (¢, ; ;¢) from

above. The wavelets 1,9 are said to have vanishing moments of order d,d,
respectively. Recall from Section 1.3 that the order of vanishing moments
governs the compression capacity of a wavelet. The fact that in connection
with biorthogonal wavelets the order of vanishing moments can be chosen
independently of the order of exactness will play an important role later.

Integration by parts

There is an important trick for generating a dual pair from another one,
essentially by integrating up and differentiating down (Dahmen, Kunoth and
Urban 1996¢, Lemarié-Rieusset 1992, Urban 1995a). To this end, suppose
that (¢, ¢) is a dual pair and ¢ € H!*¢(R). By the previous remarks, its
symbol a(z) is divisible by (1 + z). The new symbols

2 142
1+Za(z), at(z):= Rk

obviously still satisfy the first relation in (4.22). Moreover, the refinement
relations (4.11) relative to the masks a—,a" can be shown still to possess
solutions ¢~, ¢ € Lo(R) with compact support, which are related by

a”(z2):= a(z) (4.34)

Lo(@)= ") =970 =1), 5@ =Fa+ )= fla) (43
Since one still has a™(2)a*(z) + a™ (—2)a*t(—z) = 4, (¢~, #t) is still a dual

pair. Moreover, the corresponding wavelets ¢, 9+, defined by (4.20), are
related to 1,9 by

d d - ~
_— = 4op~ — Pt (z) = — . 4.
(@) = 7 (2), (@) = ~4b() (4:36)
We will have several opportunities to make use of these facts later.
The multivariate case

The simplest way of generating orthogonal or biorthogonal wavelets on R"
is via tensor products. Given any dual pair (¢, @) of univariate scaling
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functions, the products

$(z) = p(@1) - p(n), (z) = @(21) - B(zn) (4.37)

obviously form a dual pair in La(R™).

The corresponding masks are obtained from the univariate ones in a
straightforward fashion. Ome should note that for scalings by powers of
two one now needs 2™ — 1 different wavelets whose shifts span the comple-
ment spaces. Setting E := {0,1}", E, := E'\ {0}, it is convenient to index
these mother wavelets as follows,

Ye(x) = Ve, (z1) - Ve, (x), €€ E,, (4.38)
where we sometimes denote for convenience g := . The e are defined
analogously. Thus, while associating the functions

Gk = 2M2¢(27 - k), kezm, (4.39)

with the index set or grid A; := 277Z", the wavelets e j k. &e,j,k correspond
to Ve ;= 27 (% + Zn), so that Aj-i-l = A]‘ U (UeeE* Ve,j).

Several alternatives have been studied. First, one might look for genu-
inely multivariate scaling functions and wavelets. The practical relevance
in terms of small masks and locality seems to be confined to a few spe-
cial cases; see, for instance, Cohen and Schlenker (1993). On the other
hand, the tensor product structure offers numerous advantages with regard
to computational efficiency, via reduction to univariate problems, and data
structures, as long as the underlying grid structure is regular. However, to
reduce the number of mother wavelets, one might employ scalings by suit-
able integer matrices M with all eigenvalues strictly greater than one. One
then needs |det M| — 1 mother wavelets (Gréchenich and Madych 1992, Co-
hen and Daubechies 1993, Dahlke, Dahmen and Latour 1995). Again, much
less machinery is available in this case. Finally, instead of considering spaces
generated by a single scaling function, one can use a fixed finite collection of
generators. In summary, however, since none of these approaches overcomes
the obstructions posed by more complex domain geometries, it is fair to
say they do not offer any significant advantages for the problems considered
here.

Computational issues

Obviously, the stationary setting offers a variety of computational advant-
ages. One need not assemble any level dependent refinement or completion
matrices. The multiscale transformations (3.26) and (3.28) reduce to local
applications of finite filter masks which are fixed once and for all; see Barsch,
Kunoth and Urban (1997) for a discussion of these issues. The main point
of this section is to present some computational techniques for basic tasks
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like evaluating function values, derivatives and integrals of wavelets, which
have no counterpart in conventional discretization settings.

Even though many scaling functions and hence corresponding wavelets
possess no closed analytic representation, all essential information can be
drawn from the masks. We will briefly exemplify this fact for the com-
putation of integrals of products of scaling functions and wavelets or their
derivatives. More details of the following facts can be found in Dahmen and
Micchelli (1993) and Latto, Resnikoff and Tenenbaum (1992), and corres-
ponding implementations are documented in Kunoth (1995).

Due to the two scale relations (4.20), integrals involving wavelets can
be reduced to integrals involving only scaling functions. Thus Galerkin
discretization of a partial differential equation requires evaluating terms like

[ e@0%6;4(@)0°6;4(2) s, (4.40)

Q

where a successive application of (4.10) has been used when wavelets on
different levels j,j’ are involved. Assuming for simplicity that £ is a union
of rectangular domains, the above integral can be written as

> / X (@)a(2)0% ;1 (2)0° b4 (x) dz, (4.41)

mezr Rn

where x = xno is the characteristic function of the unit cube O = [0,1]™.
Due to the compact support of ¢, the sum is actually finite and involves at
most | supp ¢| terms.

Applying quadrature to quantities like (4.40) may not always be advis-
able, since although a(z) may be very regular the accuracy of the quadrat-
ure is limited by the factors %@, which may have very low regularity.
Let us therefore point out how to evaluate (4.40) up to an accuracy that
only depends on a(z). To this end, let § be any other scaling function
such as a (tensor product) B-spline. Replacing a(x) by some approximation
Y 1ezn ai95,(x) =: a;(x) which could, for instance, be obtained by interpol-
ation, the compact support of § again ensures that, when replacing a(z) by
aj(x) in (4.41), the sum over | € Z" is again finite, so that one ultimately
has to compute after rescaling the quantities

/ xo(@)0(z — k1 )0%(z — k)P d(z — k?) da. (4.42)

Similar expressions arise when discretizing nonlinear terms such as those
appearing in Burgers equation.

Here a new idea enters. The point is now that, given any finite number
of (possibly different) scaling functions ¢;, (with finitely supported masks),
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1=0,...,m, with ¢; € C"(R™) say, then expressions of the form

IR, k™ pt o u™) ::/ Haﬂ ¢i(z — k') dz (4.43)

R"™ =1

can be computed ezactly (up to round-off). Thus the accuracy of the quant-
ities in (4.40) depends only on the approximability of the coefficient a(z).

This is essentially a consequence of refinability and its close connection
with subdivision techniques; see Cavaretta et al. (1991), Dahmen and Mic-
chelli (1993) and Latto et al. (1992). The main ideas are now sketched.
Suppose ¢ is a scaling function. Differentiating and evaluating (4.10) at
(multi-)integers, yields

2 Mot p(k) = > am_10"¢(1). (4.44)

lezn

Clearly (0#¢(k) : k € Z™) is finitely supported. Thus (4.44) may be seen as
an eigenvector relation, that is, the vector V¥ = (0*¢(k) : k € supp ¢) is an
eigenvector of a finite section of the transpose of the refinement matrix for
the eigenvalue 27#I. When n > 1, that is, p is a multi-integer, every V#
with |u| = r is an eigenvector with eigenvalue 27".

To exploit these relations for evaluating 0“¢(k), k € Z", one therefore has
to find suitable additional conditions and show that they actually identify
each V# uniquely. Before we describe such conditions we point out that,

(i) once 0*¢|,n» is known, successive use of (4.10) yields 0|, m,7 €N
(ii) this can be used to determine the integrals (4.43).

To explain this latter fact, let us catenate (k!,...,&k™), (u!,...,u™) to
vectors k, p in Z°, Z% , respectively, where s = mn. Note that

where
F) = [ o(@)r(a—3")-- émla —y™) da.
RTL

The point is that F' is again a refinable function with mask coefficients

k=2") af Hal pis (4.46)

lezn =1

where a’ is the mask of ¢;.
Theorem 4.1 (Dahmen and Micchelli 1993) Suppose that all ¢; are

stable in the sense of (4.9) and ¢; € C"(R"), i = 1,...,m. Then for any
p € Z7", |p| < 7, there exists a unique sequence V* of finite support in
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z™", satisfying

7MVE = N eV, kezm™, (4.47)
lezmn
and
S (kVE =6, W <|ul, vpeNpT,  (448)

kezmn

where c is defined by (4.46). Moreover, one has
Vi =0FF(k) = (1) I(k,p), kez™. (4.49)

The moment conditions (4.48) are implied by the polynomial reproduction
(4.30), (4.32). The proof that these conditions determine the V* uniquely,
employs the concept of subdivision algorithms (Dahmen and Micchelli 1993,
Cavaretta et al. 1991).

Other variants of similar nature can be found in Dahmen and Micchelli
(1993) and Sweldens and Piessens (1994), among them recursions for eval-
uating moments like [, 2°¢(z — ) dz.

Remark 4.2 The efficiency of this concept deteriorates when the factors
in the integrals (4.40) or (4.41) involve functions on different scales, since
this requires correspondingly many prior applications of refinement matrices.
This problem does not arise when working with the so-called non-standard
representation, which will be introduced later. Likewise, when £ is a differ-
ential operator and ¢ has compact support, the above scheme can be used to
compute the stiffness matrix Ag, := (£LP;, ® ;)T accurately and efficiently.
The multiscale transformation T'; (3.26) can then be employed to generate
the stiffness matrix Ays (3.32) at the expense of O(NN;) operations. Again
this may not be the best strategy for dealing with matrices Ay, for arbitrary
ACV.

4.8. Periodization

The above setting is clearly not suitable yet for the treatment of operator
equations which are usually defined on bounded domains.

A very special but nevertheless important framework is the periodic setting
(Meyer 1990). It essentially retains all the structural and computational
advantages of the stationary shift-invariant case considered above. There
are at least two reasons for addressing this case with great care. First, many
effects will be seen to be local in nature and hence also provide important
insight for more general situations. Second, one might aim at a two-stage
process, trying to carry out the bulk of computation via the full spatial
dimension relative to a periodized problem, while treating domain-related
effects like boundary conditions separately.
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The simple trick is to replace the meaning of g; ;, := 2™/2¢(2/.—k), k € Z",
for compactly supported or rapidly decaying g € Lo(R™) by its periodized
counterpart

9jk(x) == ond/2 Z g (Qj(x +1) — k) . (4.50)
lezn
Given any dual pair (gb,(i)) on R", and setting A; := Z"/2JZ", the corres-
ponding sets

(I)j = {¢j,k ke Aj}, \I/e,j = {we,j,k 1k € Aj}, e € FE,, (4.51)

and likewise i)j, ifm-, have finite cardinality 2™ and consist of functions
which are one-periodic in each variable. Note that this preserves orthogon-
ality relations. One easily checks that (4.19) and (4.21) still imply that

(Diks bit)D = /¢j,k(m)¢~5j,l(x) dz =8y, k1€ Ay, (4.52)
G

and that the collections
U:=ouU|J ( U \Ife,j>, ¥:=dU | ( U \IIJ) (4.53)
j=0 ecE,
are biorthogonal
(U, ¥)g =L (4.54)

Hence the S = {S(®;)}jeng; S = {S(®;)}jen, form two biorthogonal
multiresolution sequences fitting into the framework of Section 3 for H =
Ly(R™/Z™). One readily verifies that

din(@) = Y ( > 2—n/2al—2k+2j+1m> Bi+1,0s (4.55)
leA; 1 \mezZr

that is, the new masks are obtained by 2/*!-periodization. Thus the refine-
ment matrices M g have circulant structure and analogously the completion

Mj,l (as well as Mj,o, Mj,l).
Defining the discrete Fourier coefficients

Fi(f) = /f(x)e‘Q"”'k dx, kezm,
u!

it is clear that for the periodization (g] := }_,,czn 9(- + m) one has

Fi(lg) = g(k), kez™

Hence any results relative to R™ are readily related to corresponding results
for R™/Z"; see also Frohlich and Schneider (1995).
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4.4. Wavelets on the interval

There is one further extension beyond R™ or R™/Z" that is worth mentioning,
namely wavelet-like bases on [0, 1]. This still seems to be awfully restrictive.
However, it will later be seen to be a key ingredient for the construction of
wavelets on any domain that can be represented as a disjoint union of para-
metric images of cubes. This includes closed surfaces arising in connection
with boundary integral equations (see Section 2.2).

Wavelets on the interval have been discussed in several papers; see, for
instance Andersson, Hall, Jawerth and Peters (1994), Cohen, Daubechies
and Vial (1993), Chui and Quak (1992) and Dahmen, Kunoth and Urban
(1996b). The basic idea common to all these approaches is to construct
multiresolution sequences S on [0, 1], which, up to local boundary effects,
agree with the restriction of the stationary spaces defined on all of R. Thus
one retains possibly many translates 27/2¢(27 - —k) whose support is strictly
inside (0,1). In addition, one takes fixed linear combinations of those trans-
lates interfering with the boundaries in such a way that the original order
of polynomial exactness is preserved. The following discussion is based on
Dahmen et al. (1996b), which differs somewhat from the other sources but
seems to be tailored best to the needs of subsequent applications.

_ For any dual pair (¢, ¢) from the spline family (4.25), that is, ¢ = 49,
¢ = d’J¢>, d > d, d+ d even, define

ol =222, 202427 . —m))g = ((-)7, (- — M) =t Oy, (4.56)
and

afl = 202(29(1 - )", 29/2¢(27 - —m))g = (20 — )", ¢(- —m))x, (4.57)

forr=0,...,d — 1. Likewise dﬁm,r, dfm’r, r=20,...,d— 1, are defined by
replacing ¢ by qg It is known that the support of q~5 always contains supp ¢. It
turns out that things depend somewhat on the parity I(d) := dmod 2. So fix
[ € N, such that for j > jo, supp @(27-—m) C (0,1), for I <m < 27— —I(d).
Define left (L) and right (R) boundary functions by

-1
L .o 312490 . —
Figr = L om0 —m)
m=—Ilo+1
27 -l1—1 )
LR — R 9j/27(9j . _ _ 7
O v = O Um0 m)‘m, r=0,..,d-1,

m=27 —[—Il(d)+1
(4.58)

where supp ¢ = [I1,l2]. Since by (4.56), (4.57), the functions qz;;k,qﬁfk are
simply truncations of the polynomial representations (4.32), it is easy to see
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that the collections of left and right boundary functions
. - o -
o = {¢j,f—rf+r .T—O,...,d—l},
5 L d—

§F = [gF r=0,..

{¢J,21—i—l(d)+d—r 1} (4.59)

together with the interior translates
of = {212(2 - —m) :m =1,..., 2 — - U(d)}
span all polynomials IT; of degree < d —1 on [0, 1], that is,
m; C § (&) udjudl). (4.60)
Setting
l:=1-(d-d),

the functions ¢][f’k, d)ﬁk are defined in exactly the same way with all tildes
removed, providing

I, C S(@f ueluak), (4.61)
Also, by construction,

#(oF uefuel) = #(dfudlUBH).

However, while the interior functions in <I’]I- , &)JI are still biorthogonal, the
boundary modifications have certainly destroyed biorthogonality of the ele-
ments in <I>]X , @f , X € {L,R}. Nevertheless, it can be shown that these
collections can always be biorthogonalized. Moreover, this is a completely
local process, which need be done only once. In this and in several other re-
spects it is very fortunate that things have been set up to exploit symmetry
as much as possible. In fact, using the fact that ¢ and ¢ are symmetric
around [(d)/2, one can show that

Srai 1 iyrd—r(1 =) = 6f1_gsr(®), T=0,...,d—1, (4.62)
and likewise for d;ﬁk, éﬁ x- Thus one ends up with pairs of collections
@j = {d’j,k 1k € Aj}, (i)j = {(Z;j,k ke A]‘},

where A; := {I —d,...,20 — | — I(d) + d}, with the following properties
(Dahmen et al. 1996b).

(i) The functions in ®;, ®; have small support, that is,
3» i
diam(supp #; 1), diam(supp ¢;x) ~ 27. (4.63)
(ii) The ®;, ®; are biorthogonal
<q)j ) (I)]T> =L
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(iii) The spaces S(®;), S (i)j) are exact of order d, d, respectively, that is,
Iy C S(®;), Mj;C S(®;). (4.64)

(iv) The spaces S(®;), S(®;) are nested. This can be verified by exploiting
trivial scaling properties of polynomials and refinability of the interior
translates.

It is worth commenting on the structure of the corresponding refinement
matrices in

®f = @7, ,M;o, @ = o7, M. (4.65)
Each M, M, consists of a stationary interior block, whose size grows
like 27, as well as an upper left and lower right block, which are completely
independent of j and of fixed size. The interior blocks are just finite sections
of the bi-infinite refinement matrices (ax—2m )k mez, (8k—2m)k,mez. Moreover,
symmetry surfaces again. Denoting for a given matrix M by M! the matrix
obtained from M by reversing the order of rows and columns, one can show
(see also (4.62)) that

M},O = ijO’ ME’O = Mj,0~ (4.66)

The next step, namely to construct corresponding biorthogonal bases,
is somewhat more involved. Using tools from spline theory, one can first
construct suitable initial stable completions. Then Proposition 3.8 can be

applied providing new (sparse) stable completions M; 1, M;; of the above
refinement matrices, which have completely analogous structure and satisfy

M;oMT, +M; MY, =1, MIM;. =6..1, ee €{0,1}. (4.67)
Thus the wavelet bases
o7 =01, M, ¥T:=0] M;, (4.68)
satisfy (¥, ¥;)0,1) = 6,71 and hence

(U, Wy =1, ¥:=0,,uJ¥;, ¥:=0,ul]T,, (4.69)
Jj=jo Jj2jo
are biorthogonal.

All filters have finite length so that the v;, z[zj,k also satisfy (4.63). The
filters are stationary in the above sense. Thus the multiscale transformations
T; (3.26) and T;* (3.28) are still efficient and require the order of N;
operations. Finally, observe that the techniques described in Section 4.2
still apply, since all operations ultimately reduce to restrictions of ¢(27 - —k)

to [0,1] which can be realized by choosing x;x as an additional factor in
(4.43).
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5. Norm equivalences and function spaces

One of the most important properties of wavelets is that they can be used
to characterize function spaces; see, for example, (DeVore et al. 1992, Meyer
1990). The Riesz basis property (3.36) which came up in connection with
the stability of multiscale transformations (Theorem 3.3) is a special case
in a whole scale of similar relations. This will be seen to play a vital role
for preconditioning, matrix compression and adaptive techniques (recall (b),
(c) and (d) in Section 3.1).

In the classical stationary shift invariant or periodic setting such results
are established by making heavy use of Fourier techniques. They no longer
apply in a straightforward manner for other domains such as the interval
or more complex cases such as closed surfaces yet to come. Recall from
Section 3.4 that the Riesz basis property as one instance of such norm
equivalences naturally leads to the concept of biorthogonal bases. When
these bases correspond to orthogonal complements between successive spaces
S(®;), S(®;41), the Riesz basis property reduces to the Pythagorean the-
orem, once the complement bases ¥; are uniformly stable relative to each
level. However, orthogonal decompositions are often difficult to realize, lead
to dense matrices G, and in some cases are not optimal for the application
at hand. Thus understanding the general class of biorthogonal multiscale
bases is vital. However, while being necessary, biorthogonality by itself is
not quite sufficient to imply the Riesz basis property (Meyer 1994). The
developments in this section are therefore guided by the following point:

o find criteria for the validity of the Riesz basis property and other norm
equivalences for biorthogonal bases, which can still be employed in
situations where Fourier techniques no longer work.

A key ingredient is a pair of direct and inverse estimates; these are also
known to play an important role in convergence theory of multigrid al-
gorithms.

5.1. Direct and inverse estimates

The type of estimate we are aiming at is rooted in approximation theory,
concerning approximation and regularity properties of the trial spaces. To
formulate versions suitable for the present purpose, suppose that & C R” is
an open connected domain (the case Q = R” included). If 2 has a boundary
we assume that it has some minimal regularity such as the uniform cone
condition; see, for instance, DeVore and Sharpley (1993) and Johnen and
Scherer (1977). Thus there exists an extension operator E : L,(£2) — Ly(R™)
that is bounded in W;*(Q2) for any m € N. The estimates we require are

. —dj d
veg}&j)Hf—UHLp(Q) < 2 J“f”W;}(g;), fe Wy (). (5.1)
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We will refer to such estimates as direct or Jackson estimates. By interpol-
ation, one derives from (5.1) a scale of similar estimates with the right-hand
side replaced by 27%|| f|| gs(L,(92))>  <m, 1 < ¢ < 00, where Bg(Ly(£2)) are
corresponding Besov spaces (see Section 2.1).

There is often a counterpart called inverse or Bernstein estimate

ol Bz < 27Nl v € S(®)). (5.2)

We next give a simple criterion for verifying (5.1) that will apply in all
cases of interest.

Proposition 5.1 Let ®; C L,(?) and E; C Ly () with % + 1% =1 have
the following properties:

(i) E; and ®; are biorthogonal,
(®5,Z5)a =1 (5:3)
where (-, -)q denotes the dual pairing for L,(€2) x Ly ().
(ii) The elements of ®; and =; are uniformly bounded, that is,

I65kllL,0 165kl @) = O), JEN, ke, (5.4)

(iii) The collections ®;,Z; are locally finite, that is, there exists a constant
C < o0 such that

#{k/ : Dj,k N Dj,k’ # 0} < C, diam Dj,k 5 2_j (5.5)

where [J; 1, is the smallest cube containing supp ¢;x and supp§; k.
(iv) The spaces S(®;) contain all polynomials of order d (degree <d —1)
on €2,

II; € S(®;). (5.6)
Then one has
1f = (£, EDa®illL,@ < 2_dj||f||wg(9)- (5.7)

The type of argument needed here is essentially folklore. Since it plays a
central role we sketch a proof. By (5.6), one has for any P € Il

A Z0al o S WP gt 3 -Péuwallew, o
EI] & N0;, £ 70
(5.8)
On account of (5.5), the sum involves a uniformly bounded number of sum-
mands. Using (5.4) gives

P .
(F=Pgiwda| I65ull7 0y S 1F=PIE 0y S 2%, ) (B:9)

where a Bramble-Hilbert-type argument has been used in the last step.
A little care has to be taken near the boundary. In order to employ the
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scaling argument needed for the Bramble-Hilbert argument, one can employ
extension techniques; see Oswald (1997) for details. Bearing (5.5) in mind,
and summing over k € A;, yields (5.7). O

Estimates of the type (5.1) readily lead to estimates without regular-
ity assumptions. Consider the K-functional (see, for instance, Bergh and
Lofstrom (1976))

Ka(f,t) = K(f,t,Lp, Wy) = _inf {I1f = gllzp0) + tlglwgce }- (5:10)
P

One immediately infers from (5.1) that

inf If =l S Kalf,277). (5.11)
veo;

Remark 5.2 Under assumptions (5.4) and (5.5), the ®; are uniformly
stable (relative to || - ||1,q) and || - ll¢,(a;))-

Remark 5.3 Obviously Proposition 5.1 applies to all the above examples
of biorthogonal multiresolution sequences (with Z; = ®;). In fact, for wave-
lets on R" recall (4.32), the multiresolution on [0,1] was constructed in
Section 4.4 so that (5.6) holds, while all other conditions are obviously sat-
isfied. Thus we will assume from now on that the direct estimate (5.1) is
valid for the order d of polynomial exactness.

Remark 5.4 Suppose ¢ € La(R™) is a (compactly supported stable) scal-
ing function. Let
v:=sup{s: ¢ € H*(R")}.
Then
[llgsrny S 290l py@ny, v € S(Dy), (5.12)

~

holds for any s < 7. It is also known that ¢ € Lo(R™) implies ¢ € H*(R")
for some s > 0 (Villemoes 1993).

For a proof see, for instance, Dahmen (1995). One can show that when ¢, é
is a dual pair of compactly supported generators, then their integer shifts
are locally linearly independent. Then || - || gs(my and || - || ) are equivalent
norms on S(®g) and the claim for integer s follows from summing the local
norms and rescaling.

Remark 5.5 (Dahmen 1995, Dahmen et al. 1996b) Let ®; C L2([0, 1])
denote the generator bases constructed in Section 4.4. Then

lollgeaqoay S 29 M0llzyqop, v € S(®5), s<7. (5.13)

Finally, the inverse inequalities can be expressed in terms of the K-
functional as well. In fact, from (5.2), one can deduce that

Ka(v,t) < minfL, 2} o), veS@).  (5.14)
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The form (5.10) and (5.14) of the direct and inverse estimates will guide the
subsequent discussion.

5.2. The Riesz basis property

As pointed out in Section 3.4, the stability of multiscale transformations
(3.26), (3.28) is equivalent to the Riesz basis property of the basis ¥ (and
). It turns out that sufficient conditions which apply in our cases of interest
can be formulated in a general Hilbert space setting. This will shed some
light on the essential mechanisms. An important point is that, as one will
see, once a biorthogonal pair ¥, ¥ is given, additional conditions implying
the Riesz basis property only concern properties of the spaces spanned by
subsets of ¥ and V¥, not of the particular bases. These properties can be
formulated in terms of the estimates (5.10), (5.14).

In order to stress this point, we will first reformulate the problem some-
what, which, by the way, corresponds also to the strategy of constructing
Riesz bases employed in Section 4.4. First of all, it is usually not so difficult
to assure stability of a complement basis ¥; = {1+ : kK € V;} in the space
®,.1. We will therefore assume in the following that

1[dT ;)1 ~ [ld]le,(v,)- (5.15)
Moreover, recall from (3.45) that biorthogonality is equivalent to
QiQ=Q; for j<I, (5.16)

where the Q; are the projectors Qju = (v, ®;)®; = (v, W)W of (3.44),
(3.46), which, by Remark 3.6, have to be uniformly bounded when ¥ and
¥ are Riesz bases. Then, by (5.15), the norm equivalence (3.36) can be
equivalently expressed as

Iflla ~ No(f) ~ No-(f), (5.17)
where, for Q_; :=0,

Z (@ - Qj1 f”H (5.18)

The objective now is to establish the validity of (5.18) for a given sequence
Q of projectors satisfying the necessary conditions of uniform boundedness
and (5.16). It is important to note that in this form the result applies when
the ; are given only in the form Q;v = (v, <i>j)<1>j, that is, without explicit
knowledge of the right complement bases ¥; yet. Note also that the con-
dition (5.16) implies that the ranges 5']- of the adjoints Q] are also nested.
Moreover, these spaces are also dense in H (Dahmen 1994, 1996). Let us
denote the corresponding sequence by S. The following result says that the
Riesz basis property holds when, in addition to biorthogonality, the primal
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and dual multiresolution sequences S, S both have some approximation and
regularity properties expressed in terms of pairs of direct and inverse estim-
ates (Dahmen 1996).

Theorem 5.6 Let S be an ascending dense sequence of closed subspaces
of H and let Q be a sequence of uniformly H-bounded projectors with
ranges S satisfying (5.16). Let S be the ranges of the adjoint sequence Q*.
Suppose there exists a family of uniformly bounded subadditive functionals
w(+t) : H— Ry, t > 0, such that lim;_,y+ w(f,t) = 0 for each f € H and
that the pair of estimates

I =l S wl(f27), (5.19)

and
w(vj,t) S (min{1,12'})Y|vsllm, v; €V, (5.20)

holds for V = & and V = § with some 7,5 > 0, respectively. Then
Il ~ No(-) ~ No+(-). (5.21)
Here is an immediate consequence of Theorem 5.6.

Remark 5.7 Note that the K-functional Ky(-,t) defined by (5.10) has,
by (5.11), (5.14),(5.13), (5.12), all the properties of w(-,t) required above.
Thus the biorthogonal bases constructed in Sections 4.2 and 4.4 are indeed
Riesz bases.

A few comments on the proof of Theorem 5.6 are in order; see Dahmen
(1996) for details. First one observes that (Cohen 1994)

No(-) S Il-llg ifandonlyif |||z < No-(-)
Thus it suffices to prove that
|-z S No() and | |l < No-(), (5.22)

or the corresponding pair of opposite inequalities. To prove estimates of the
form (5.22) one can employ a technique which is also familiar in the analysis
of multilevel preconditioners.

Strengthened Cauchy inequalities
To this end, suppose there is a (dense) subspace U C H with a (stronger)
norm || - ||y such that, for some ¢ > 0,

If = Qifllo < 27%fllws If —Qifller < 27| fllu, (5.23)
and

lilly S 280l Nvile S 2Flvillvs, v € S;. (5.24)

~ ~
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Then one can estimate

(Q5 — Qj—1) [, (Qi — Qi—1)f)
{ Q5 — Qi—1)flly- Qi — Qi) flly  if i<,
(Q; — Qi-1)flly Qi — Qi) flly« if >4
Thus by (5.23), (5.24),

o

IfIE = D {Q—Qi—1)f (Qi — Qi—1)f)
i,j=0
< S 27 Q) - Qi—) Flgll(@i — Qi) fllg S Nal(f)™
1,j=0

When Q is uniformly bounded on U* the estimates (5.23) and (5.24) can
be shown to hold by duality also for @*. Thus the same argument also yields

IFIE < No-(H)*.

A scale of interpolation spaces
So, it remains to find such a subspace U. Natural candidates are the spaces
o which are defined for s > 0 as the collection of those f € H for which

£ 58, = D 2271H(Q5 — Qy—1)f Iy < o0
7=0

They are dense reflexive subspaces of H, and, with a proper understanding
of continuously extended projectors, one has a representation of their duals
in terms of the dual projectors Q* (Dahmen 1996)

(A3)" = Ag:. (5.25)

Moreover, these spaces are defined so that, again under assumption (5.16),
a pair of direct and inverse inequalities hold, namely

If = Qiflla S 2770 fllag,  1If - Qifllag.y S 272\ flm,  (5:26)
and

lvillag, < 2%lvsllms Noilla < QjSHUjH(AsQ*)*- (5.27)

Finally, by (5.16), Q is trivially uniformly bounded on A for all s, that is,

1Qjllag, =1, Jj€Ng,s€ER. (5.28)

Thus one almost has the pair of inequalities (5.23), (5.24) without any
assumption on Q beyond (5.16) and uniform boundedness. What is missing
is the relation between the spaces (A%.)" and (A5)". If they were equi-
valent, (5.26) and (5.27), together with the strengthened Cauchy inequality
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argument, would confirm (5.22) and hence the claim of Theorem 5.6. This
is where the direct and inverse inequalities (5.19), (5.20) come into play. In
fact, with the aid of these inequalities one can prove that

I llag, ~ 1 llgg, ~ Il - lag,  for 0 <'s < min{y,%}, (5.29)
where
m . .
I£11Es = 1F1% + D 2°%7w(f,277)2, (5.30)
=0

which closes the gap.

These results are closely related to interpolation theory. In fact, the A%
are interpolation spaces obtained by the real method; see, for instance, Bergh
and Lofstrom (1976), DeVore and Popov (1988a), DeVore and Sharpley
(1993) and Peetre (1978). A detailed discussion of this point of view can be
found in Dahmen (1995).

As mentioned before, the role of w(-, t) is typically played by a K-functional
or a modulus of smoothness, which under our assumptions on the underlying
domain are equivalent seminorms (Johnen and Scherer 1977). In that sense
the spaces Bf, can be viewed as generalized Besov spaces. Thus, in addition
to the Riesz basis property, the above criteria automatically establish norm
equivalences for a whole scale of spaces. The equivalence of the artificial
spaces Ag with the Besov-type spaces B;, in some range of s immediately
yields norm equivalences for these (classical) function spaces, which will be
addressed next.

5.8. Characterization of Sobolev spaces

When  is a domain in R™ as above and w(-,t) is an Ly modulus of smooth-
ness

w(f,t) = walf t) o) = |i1|l£t AL N Lo(9n)

where A% = AL AT Apf = f(-+h)— f(-) and Qup = {z:x+lh e Q1=
0,...,d}, or when w(-,t) is the K-functional from (5.10), the norm in (5.30)
is equivalent to || - || gs(qy for 0 < s < d, and

H*(Q) ~ B3(L2(12))- (5.31)

We will now apply the above results for H = H*(Q). For simplicity we focus
on H%(Q) = Ly(R2). Moreover, let us denote for s > 0 by H® some closed
subspace of H*(Q2) (or H*(R) itself) which is, for instance, determined by
some homogeneous boundary conditions. The key role is again played by a
pair of direct and inverse inequalities

inf |lv—vjllL, S 2 9 vllgs), veH’, 0<s<dy,  (5.32)
v €V;
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and
lvillgs@) S 290villiy@)y v € Vi s <. (5.33)

Recall from Section 5.1 under which circumstances such inequalities hold.
The direct inequality may be affected by homogeneous boundary conditions
incorporated in S. If this is done properly the argument stays essentially
the same, since near the boundary not all polynomials are needed.

From (5.29), (5.28) and duality (5.25) one infers the following fact.

Theorem 5.8 Let Q be uniformly bounded with range S and suppose
that (5.16) holds. Moreover, assume that S and the range S of Q* satisfy
(5.32) and (5.33) for some d := dg,d := dg, 0 < v := min{7s,d} and
0 < 4 := min {3, d}, respectively. Then

N 1/2
(Zsz(Qj—Qj_nfnizm)) ~ @, s € (=3, (5:34)
7=0

where it is to be understood that H*(Q) = (H*(Q2))* for s < 0. Moreover,
@ is uniformly bounded in H*® for that range

1Qivllas) < lvllasy, v € H(Q). (5.35)

When H® = H*(Q2) and both sequences S, S have a high order of exactness
d,d, respectively, the above range may have a significant part for s < 0.
There is, however, always some 4 > 0 reaching into the negative range. It
could be small if H® is a true subspace of H*(2) and the corresponding
boundary conditions are incorporated in §. What matters, though, is that,
by (5.25), (5.31) and the above result applied to s > 0, one still has

o 1/2
(Z 2—28j“(Q;f _ Q;—l)fuig(ﬂ)) ~ N fllg-sy s €1[0,79). (5.36)

Jj=0
It is convenient to express these relations in terms of the operators

o0

Bsf =) 2%(Q5 — Q-1 (5.37)

j=0
which act as a shift in the Sobolev scale

”ESf”Ht(Q) ~ ”f“HH'S(Q), t+se (_:5/’,7)’ (538)

just like classical Bessel potential operators in harmonic analysis. Due to
(5.16), one has

Sil=n, =320 (Q- Q) (5.39)
=0



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 115

It is important to note that one-sided estimates of type (5.34) hold for a
wider range of s. In fact, the uniform boundedness of the Q; ensures that

1Q;f = fllL,i0) < veis‘%fp,.) If = vl

Thus by Proposition 5.1 and (5.11) one obtains
Q) = Q- fllyey S K (£,277, Lo, HY).

Since
o _ N\ 1/2
<||f||%2(n) + > 2K (f,2_3+1,L2,Hd) )
J=0

is known to be a norm for the Besov space B3(L2(2)) = H*(f2), one obtains,
for instance,

[e o]

> 20Q5 — Q- flILyi) S WMl —F<s<d (5.40)
=0

If corresponding wavelet bases ¥, U are known, &, can be written as

Sef = 3 22, ), (5.41)
AEV
and (5.34) becomes
1fllzzs ~ ID°Cf, O ey (v 5 € (=5:7), (5.42)
where D? denotes the diagonal matrix
(D*)an = 2565 . (5.43)

Remark 5.9 In view of Proposition 5.1, Remark 5.4, Remark 5.5, The-
orem 5.8 implies that the wavelet bases constructed in (4.23) for La(R), in
(4.53) for the periodic case and (4.69) for the interval [0, 1] all satisfy (5.42)
for s € (—%,7)-

Frames

It is important to note that norm equivalences of the type (5.34) for s > 0
do not require knowlege of concrete bases for decompositions (Q; —Q;-1)S;.
Instead one can prove that (Dahmen 1995, Oswald 1994, Oswald 1992, Os-
wald 1990)

£ s () ~ inf {Z 22| fill Ty s f =D fj} : (5.44)
=0 =0

In terms of interpolation theory, norms of this type correspond to the J-
method (Bergh and Lofstrom 1976, Peetre 1978). Such norm equivalences
will play a crucial role in preconditioning.
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These results have further natural extensions to other (reflexive) Banach
spaces like Ly-spaces (1 < p < oc). Interpolation between L,(€2) and
W (Q), say, leads to Besov spaces By (L,(£2)) endowed with the norms

ad o » q
115 r 0y = IS, oy + D0 299K (£,277, Ly, W) (5.45)
j=0

for d > s > 0. Assuming that ¥, ¥ are biorthogonal wavelet bases (in
L2(?)) one still obtains norm equivalences of the form

. 1/q

17115z ~ (l|<f, Bolalla,, + 30T \Pmn‘é,,(vp)
j=jo
(5.46)

which, of course, reduce to (5.42) for s > 0, p = ¢ = 2. These norm
equivalences play an important role in nonlinear approximation (DeVore

and Lucier 1992, DeVore et al. 1992). This, in turn, will be of interest in
connection with adaptive schemes (see Section 11).

6. Preconditioning

This section is only concerned with preconditioning systems arising from
discretizations of operator equations, which in a loose sense may be termed
elliptic. In particular, all the examples in Section 2 are covered (see also (b)
in Section 1.5). I would like to stress the following points.

e Once the norm equivalences discussed in Section 5.3 are available, the
principal argument is rather simple and applies to a relatively wide
range of cases, represented by the reference problem in Section 2.3. To
bring out the basic mechanism, I will address it first in this generality,
which will cover various special cases treated in the literature.

e The strongest interrelation between rather independent developments
in the area of wavelets on one hand and finite element discretizations
on the other hand occurs in connection with preconditioning. Since
these developments usually ignore each other, I will comment on both.
In view of the existing excellent treatments of multilevel subspace cor-
rection methods seen through the finite element eye, the main focus
here will be on the wavelet or basis oriented point of view.

o In the present generality the results are purely asymptotical. The ac-
tual performance of corresponding schemes depends very much on the
concrete case at hand. In general, it is hard to say which concept is
best able do cope with near degeneracies or strong isotropies.
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6.1. Discretization and projection methods

Consider problem (2.24) for the spaces H!, H!, Ly as described in Sec-
tlon 2.3. Throughout the following we will assume that ¥ = {¢) : A € V},

= {» : A € V}, with V = A, UV_, are biorthogonal wavelet bases in
L2 such that the norm equivalences

I £l ~ D (f, 0) T llgyewy, s € (=9,7), (6.1)

hold.

The numerical schemes to be used for the solution of (2.24) may be viewed
as generalized Petrov—Galerkin schemes. To describe this, we adhere to
notation (3.43) and suppose that ©, is a collection of functionals that is
defined and total over S(LW¥,). To solve (2.24), the objective is to determine
up € S(¥,) such that

(Lup,On) = (f,On). (6.2)

Of course, © = ¥ gives rise to a classical Galerkin scheme, while colloca-
tion is obtained when O involves Dirac functionals. In the latter case the
right-hand side has to be taken from a sufficiently smooth space. This is
appropriate when £ is also known to be boundedly invertible as an oper-
ator from H*® into H%~2% for some larger s € R. To explain what is meant
by stability of the scheme, it is convenient to reinterpret (6.2) as a projec-
tion method. Suppose that © is a sufficiently regular dual set for © and let
Py := (-,04)O4 be an associated projector. Then (6.2) is equivalent to

PALQAu = Pypf. (6.3)
The scheme (6.2) is said to be (s, 2t)-stable if for #A large
|PaLv||grs—2: ~ ||v|lgs, v € S(¥a), (6.4)

that is, the finite-dimensional operators £ := PALQ are uniformly bounded
invertible mappings from H*NS(¥,) onto H5~%NS(O4). In terms of linear
systems, substituting us = d7 ¥, into (6.2) yields the linear system

AT (LTs,On) = (f,On). (6.5)
In particular, for the Galerkin case, (6.3) becomes
QALQAur = QLS. (6.6)

The most important case for the subsequent discussion is (t, 2t)-stability, in
brief stability, which then means

1QALv] -« ~ v,  u € Sy (6.7)

In general not much is known about stability for the above general class of
Petrov—Galerkin schemes. For (nonconstant coefficient) pseudo-differential
operators on the torus, stability conditions are established in Dahmen,
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Proidorf and Schneider (1994c¢); see also Dahmen, Kleemann, Préfidorf and
Schneider (1996a) for an application to collocation.

When L is a pseudo-differential operator, its injectivity, boundedness and
coercivity of the principal part of its symbol also imply stability (6.7) of the
Galerkin scheme (Dahmen et al. 1994¢, Dahmen, Profidorf and Schneider
19945, Hildebrandt and Wienholtz 1964). Of course, when L is selfadjoint
in the sense that

a(u,v) = (Lu,v) (6.8)

is a symmetric bilinear form, ellipticity (2.23) means that

-1 = aly ) ~ - llae, (6.9)

and the Galerkin scheme is trivially stable.

We think of the trial spaces having large dimension so that direct solv-
ers based on factorization techniques are prohibitively expensive in storage
and computing time. On the other hand, in the symmetric case (6.9), for
instance, the speed of convergence of iterative methods is known to be gov-
erned by the condition numbers

”52([’A) = Amax(cA)//\min(ﬁA), (610)
where
(Lv,v) . (Lv,v)
Amax(LA) = ——— Amin(Lp):= f . 6.11
max(L4) v:g‘ng) (v,v) (£4) veg(l\ll,\) (v,v) (6-11)

Note that when t # 0, the condition numbers grow with increasing #A. In
fact, on account of the norm equivalence (6.1) and (6.9), one obtains

Amin(‘CA) < <£¢A»¢A>/”¢A”Lz ~ 22t|)‘l7
while
Amax(£4) 2 (Lx, 92}/ [9allz, ~ 22,
Thus choosing |A| as the lowest or highest level in A, depending on the sign
of t, it is clear that
ra(La) 2 22N (6.12)
where |A| := max{|\| — |X|: \,\ € A}.
Thus, in such cases the objective is to find a symmetric positive definite

operator Cp such that ka(CoLA) remains possibly uniformly bounded, so
that schemes like

ubl =l +Ca (LAt — f),

or, better, correspondingly preconditioned conjugate gradient iterations,
would converge rapidly.
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6.2. An application of norm equivalences

With the results of Section 5.3 at hand, the task of preconditioning has
become relatively easy. Since, under the assumption (2.23), £ acts as a shift
in the Sobolev scale, it is reasonable to exploit the fact that ¥, from (5.37)
does that too. Hence 3 should have the capability of undoing the effect of
L. By the previous remarks, the stiffness matrix

Ay = (LT, Tp)T (6.13)

relative to the wavelet basis W, is ill conditioned for ¢ # 0 and large #A.
However, a diagonal symmetric scaling suffices to remedy this. This observa-
tion has been made on various different levels of generality in several papers;
see, for instance Beylkin (1993), Dahmen and Kunoth (1992), Dahmen et
al. (1996¢), Dahmen et al. (1994b), Jaffard (1992) and Oswald (1992).

Theorem 6.1 (Dahmen et al. 1994b) Suppose that the Galerkin scheme
(6.6) is stable (6.7) and that the parameters 7v,% in (6.1) satisfy

It| <,%. (6.14)
Let D} be the diagonal matrix defined by (5.43). Then the matrices
B, := D;'AA\D}’ (6.15)
have uniformly bounded spectral condition numbers
IBallIBX | =0(1), AcV. (6.16)

Proof. Consider any v € S and set w := v (see (5.37)). Thus, by (6.14)
and (5.38), one obtains

lwllz, = [1Zevllp, ~ ol ~ |QALQAVI| - ,

where we have used the stability (6.7) in the last step. Employing the norm
equivalence (5.38), now relative to the dual basis, and bearing (5.39) in
mind, yields

lwllz, ~ “E*—thxﬂQAE—tw“L2 .
This means that the operators
Lip =S, QALQAZ ¢ : Sp — Sa
are uniformly boundedly invertible, that is,
1CeAllILEAII= OQ),  #A — co. (6.17)

It is now a matter of straightforward calculation to verify that the matrix
representation of L; 5 relative to ¥ is

(Lea¥p, Up)T = Dy'AADYY, (6.18)

which proves the claim. O
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Letting #A tend to infinity, the original equation Lu = f can be viewed
as an infinite discrete system (recall (1.35) in Section 1.5)

D!AD'd=D"'f (6.19)

where D~% and A are the infinite counterparts of D/_\t, A ), respectively, and
f := (f,U)T is the coefficient sequence of f expanded relative to the dual
basis ¥. The sequence d then consists of the wavelet coefficients (relative
to ¥) of the solution

u=dTv

of (2.24). The infinite matrix B := D=*AD™! is, on account of Theorem 6.1,
a boundedly invertible mapping from ¢5(V) onto £3(V).

It is remarkable that similar techniques also lead to preconditioners for
collocation matrices (Schneider 1995). In brief, recall that (6.3) defines a
collocation scheme, when the Py in (6.3) are interpolation projectors. Let
us consider full sets A, defined in (3.24), which means S(®;) = Sa,, and
assume that for a suitable mesh of points {zjx}rea,, the corresponding
projectors have the form

Paf=Lsf=Y 272 f(xsn)bk = (f,65)0,,
keAy

that is, 6jk0sm = Osm(zsK) = 2Jd/2(5k’m, k,m € Ay. For instance, 6
could be a spline function interpolating the Kronecker sequence. Moreover,
assume that

(Lj+1 — Ly) f = (£, 95)%) (6.20)
where

9 = LMy, v = O, (621

are corresponding stable completions.

Theorem 6.2 (Schneider 1995) Suppose that the collocation method
(6.3) relative to Py, = L is (s, 2t)-stable in the sense of (6.4), and assume
that

n

n
Pcs—ot,
s 2

5 <7 >0, s<n. (6.22)

Then the matrices
T
D5 (37, 97) D} (6.23)

have uniformly bounded spectral condition numbers.
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Details of the proof can be found in Schneider (1995). It uses continuity
of L as a mapping on Sobolev spaces, the stability (6.4) and the fact that

o0

£ ~ S22 |(Liqn — L) fI13,

Jj=0

for n/2 < 7 < 5. As for this norm equivalence, note that the L; do
satisfy (5.16). But they are only bounded in higher Sobolev spaces, which
causes conditions (6.22). Keeping this in mind, the above equivalence can
be deduced from the general results in Sections 5.2 and 5.3. For details see
Dahmen (1996).

The above simple argument is designed to show the qualitative role of
norm equivalences in connection with preconditioning. In practice, the con-
stants involved will matter. However, in principle, it should be noted that,
in Theorem 6.1, neither

e selfadjointness of £, nor
e positive order 2¢ > 0

is required for the validity of (6.16).

For unsymmetric problems, (6.16) alone is not sufficient to imply the
efficiency of corresponding variants of the preconditioned conjugate gradi-
ent method, such as GMRES. But behind the validity of (1.29) or (2.23)
there is usually a symmetric principal part of the operator £, in which case
GMRES will perform well, provided that the condition numbers stay small.
Alternatively, if the constant in (6.16) stays moderate, one can square the
preconditioned system and the conjugate gradient scheme works well. We
can summarize this under the following purely asymptotic result.

Remark 6.3 Suppose that every matrix vector multiplication with A
can be carried out in O(#A) operations uniformly in A C V, and assume
that the (exact) Galerkin solution up of (6.6) in Sy satisfies

lu — uallge = ea.

Then an approximate solution @ of (6.6) satisfying ||ju — @Azt = O(ea)
uniformly in A can be computed at the expense of O(#A) operations.

The argument is based on standard nested iteration. Solving first on a
small Ag C V, then doubling #A¢ to Aj, say, and noting that ep,/er, < C,
only O(A;) iterations on the preconditioned system are needed to reduce
the error from €5, to €a,, when using 4,, as a starting solution. Repeating
this argument confirms the assertion.

Next, let us address some algorithmic issues. When £ is a differential
operator, the stiffness matrices

A<I>J = <‘C(I>Ja q)J)T
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relative to the fine scale (nodal) bases ®; are sparse under the usual as-
sumption (5.5). Due to the larger supports of wavelets from coarser scales
the corresponding stiffness matrices A, relative to the wavelet bases of
S(® ) are less sparse. Thus, assembling the wavelet stiffness matrix exactly
would increase computational and storage complexity. However, when work-
ing with the fully refined sequence of spaces S(®;), this can be remedied as
follows. All that is needed in an iterative scheme is the application of the
preconditioned matrix. Since by (3.31),

Apr, =TTAs,Ty, (6.24)

where T'; is the multiscale transformation from (3.25), (3.26), the applica-
tion of the preconditioned matrix By := szAA JD[_\z to a vector v can be
carried out as follows.

ALGORITHM 1 (CB: CHANGE OF BASES)

(1) Compute w = TJDXiV. Due to the pyramid structure of T; (3.26)
and the geometrical increase of #®;, this requires O(#® ) operations,
where the constant depends on the length of the masks in M;.

(2) Compute z := Ag,w, which, due to the sparseness of Ag, is again a
O(#® ;) process.

(3) Compute DKﬁT}‘z, which corresponds to the first step.

Remark 6.4 When £ is a differential operator, the application of the
preconditioned matrix DKﬁAA JDX3 relative to the full spaces S(®;) to a
vector requires the amount of O(#®;) = O(N;) operations and storage.

Remark 6.5 In the periodic case, or when working on the interval, Ag,
can be computed very efficiently (even for variable coefficients) by the meth-
ods described in Section 4.2.

Remark 6.6 It is also important to note that the above preconditioner
only requires knowlege of the transformation T in (3.26) not of the inverse
T;l (see Section 3.4). Recall that T; involves the refinement matrices for
®; and the stable completions M 1, j < J, that is, the masks of the wavelets
(see (3.27)). Hence this method can still be used in the present context with
the same efliciency when only the matrices M; are sparse while the inverses
G; are fully populated. This is the case for many pre-wavelets, that is,

for stable complement bases ¥;, which span the orthogonal complement of
S(®;) in S(®j41).

So far this strategy refers to fully refined spaces S(®;). Things change
when the trial spaces are to be adapted during the solution process. This
means that one actually wants to compute a solution from spaces Sp where
A is a much smaller lacunary subset of Ay, J = max{|A|+1: X € A}. To
take full advantage of the corresponding principal reduction of complexity,
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any steps requiring the computational complexity of the full space S(® )
should be avoided. This suggests building up the matrix A directly but
only relative to the elements in A. How to do this efficiently depends very
much on the particular operator £. We will comment on this issue later
in more detail for operators satisfying (2.25). In this case one can exploit
certain decay properties of the entries of Aj to compute A, approximately
to any desired accuracy.

6.3. Hierarchical bases preconditioner

The change of bases preconditioner has already been employed in connection
with hierarchical bases (Yserentant 1986). The corresponding setting of
piecewise linear bivariate finite element and associated hierarchical bases
was described in Section 4.1. Due to the simple and very sparse structure
of the matrices M; (see (4.2) and (4.4)), Algorithm 1 above is very efficient.
However, the hierarchical bases are invariant under the application of L; —
L;_1 asin (6.20), where the L; are Lagrange interpolation operators relative
to the triangulation 7;. Hence they are not bounded in Ly(Q2) and the
collection ®oULJ;Z, ¥, is not a Riesz basis for L2(€2). Moreover, ||-|| g1 is not

equivalent to the discrete norm (L_; := 0) (Z?io 2% ||(Ljqr1 — Lj)f||iz) 1/2
for n > 2. Hence the hierarchical basis preconditioner, based on Algorithm
1, is not asymptotically optimal. For n = 2, the condition numbers grow
like the square of the number of levels, while for n = 3 they already exhibit
an exponential growth. Nevertheless, its extreme simplicity accounts for its
attractiveness for n = 2. Ways of stabilizing it, for instance with the aid of
the techniques in Section 3.5, will be presented later.

6.4. BPX scheme

Although, as it stands, the simple hierarchical complement bases do not
provide an asymptotically optimal scheme with regard to preconditioning,
it turns out that the full power of wavelet decompositions is needed only
for operators of non-positive order. Throughout this section we will assume
that £ is selfadjoint positive definite (6.8), (6.9) and that the order 2t of
L is positive. In this case one gets away with much less. So, suppose the
bases ¥ are stable in the sense of (3.3) and give rise to a hierarchy of
nested spaces S; = S(®;) C H' as before. The following discussion reflects
an approach to multilevel preconditioners developed in the context of finite
element discretizations (Bramble et al. 1990, Oswald 1992, Yserentant 1990,
Xu 1992, Zhang 1992). The objective is to find a positive definite selfadjoint
operator C; on Sy such that

C;lv,v) ~ (Lyv,v) = a(v,v), vES]y, (6.25)
J



124 W. DAHMEN

which means that Cy and L ; are spectrally equivalent. In fact, the uniformity
of (6.25) in J implies, in view of the min-max characterization of eigenvalues,

that
(c”c c}”)
Amin <C1/2£ C}/2)

To describe a candidate for Cj, let P; denote the orthogonal projector onto
Sj. Clearly the Py satisfy (5.16) and P; = Pjy. Thus Theorem 5.8 applies
and (5.38) means that

~ 1. (6.26)

J
Z 229(P; - Pji_1), P-p:=0,

satisfies
(€5v,0) = (€5 %0,65 %) = IZll, ~ e (6:27)
Hence, by ellipticity,
(C5lv,0) ~a(v,v), vES], (6.28)
so that C;P;LP; have uniformly bounded condition numbers. This corres-
ponds to the situation assumed in Theorem 6.1, since the evaluation of C;

seems to require knowledge of explicit bases for the orthogonal complements.
However, since, clearly, by (5.39),

J
Cs= 22_2tJ(Pj - Pj—1)7
Jj=0

andt > 0, Cy is easily seen to be spectrally equivalent to Cj := ijo 272 p;,
which, by the uniform stability of the ®;, is spectrally equivalent to

Cjv:i= 22 2N (v, 05 k) Bj k- (6.29)
keA;

Combining the spectral equivalence of C; and C; with (6.27) and (6.29)
yields

(CyPyLPyv,v) ~ (v,v). (6.30)
Hence (Dahmen and Kunoth 1992, Oswald 1992, Zhang 1992),
ke (C;P;LPy) =0O(1), j€EN. (6.31)

Note that application of C; does not require explicit knowledge of any com-
plement basis. It also requires only the order of #®; operations. For more
details about the actual implementation, the reader is referred to Bramble
et al. (1990) and Xu (1992).
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Exact decompositions in terms of complement bases have been replaced
by redundant spanning sets, which consist here of properly weighted nodal
basis functions on each level. In brief, the collections {2 %%, : k € A, j =
0,...,J} form frames for H*(Q2). Here {g;} is called a frame for H, if

llIE ~ > (v, g))ul’, veH. (6.32)
J

It is perhaps worth stressing the relation to the wavelet transforms.

Remark 6.7 The corresponding wavelet preconditioner looks like

J-1
Cyv= Y 27% Z (v, 905 k)Y k-

Jj=-1 kEVj

Since the 1;x are linear combinations of the ¢;i1,, its evaluation always
seems to be more expensive than that of (6.29). The cost of each iteration
increases with the lengths of the masks of the wavelets (Griebel and Oswald
19956, Oswald 1994).

Adaptive grids

Theorem 6.1 has been formulated for arbitrary subsets A € V. Thus ad-
aptivity can be based, in principle, on adapting the choice of A to the prob-
lem at hand. It will be explained later how to arrange that. Roughly speak-
ing, the behaviour of the wavelet coefficients themselves is an indication for
the selection of relevant indices. The point is that this kind of adaptation
essentially requires managing indez sets.

So far, in a finite element context, the above discussion of the BPX scheme
refers to spaces generated by uniform refinements. Adaptivity usually re-
quires mesh refinement strategies based on monitoring the current solution
through additional local comparisons. It is interesting to see how precondi-
tioning is affected when working with adaptively refined meshes. Employing
hanging or slave nodes, that is, adding locally further nodal basis functions,
corresponds, roughly speaking, to considering submatrices of those stem-
ming from uniform refinements. Since the convex hull of the spectrum of the
latter matrices contains the spectrum of the submatrices, the BPX scheme
is trivially adapted to nonuniform refinements and the condition numbers
remain bounded.

Slave nodes require a little care retrieving stable bases for the resulting
finite element spaces. If one wants to avoid slave nodes, the nonuniform re-
finements have to be closed by introducing suitable transition elements; see,
for instance, Bank, Sherman and Weiser (1983). In this case, the submatrix
argument does not work in a strict sense. Nevertheless, one can prove that
for such adaptive refinements resulting in highly nonuniform meshes, the
BPX scheme still produces uniformly bounded condition numbers. This has
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been shown first in Dahmen and Kunoth (1992), where further details can
be found; see also Bornemann and Yserentant (1993).

An analogous result holds for fourth-order problems. As a model case, one
could consider £ = A? with homogeneous Dirichlet boundary conditions. A
convenient conforming finite element discretization can be based on certain
piecewise cubic macro patches generated by suitable subdivisions of (non
rectangular) quadrilaterals. These are obtained by connecting the intersec-
tion of diagonals with the midpoint of the edges of the quadrilateral. The
nodal basis functions are fundamental interpolators relative to point values
and gradients at the corners of the quadrilaterals and normal derivatives at
the midpoints of edges. The resulting spaces are nested and the underlying
mesh refinements stay regular, in the sense that smallest angles are bounded
away from zero. See Dahmen, Oswald and Shi (1993a) for more details. Ad-
aptive refinements analogous to the piecewise linear case are discussed by
Kunoth (1994), where the corresponding result about uniformly bounded
condition numbers is also established. One should note that the classical
cubic Clough—Tocher macro element is not suited for refinements. Since the
quintic C'-Argyris element requires higher smoothness at the vertices, its
refinement leads to nonnested trial spaces.

The hierarchical basis and BPX preconditioner are special instances of
the following more general class of schemes that have a long tradition in the
finite element context.

6.5. Multilevel Schwarz schemes

We will briefly indicate how the above material ties into the more general
setting of Schwarz schemes and stable splittings, which is also a conveni-
ent framework for incorporating domain decomposition and multigrid tech-
niques. For a more extensive treatment of these issues, as well as further
details concerning the following discussion, we refer, for example, to Griebel
and Oswald (1995a), Oswald (1994), Xu (1992) and Yserentant (1993). As
above, £ will be selfadjoint positive definite on some separable Hilbert space
H = Hj, that is, a(u,v) := (Lu,v) is a symmetric bilinear form and we as-
sume that (6.9) holds with H? replaced by H. We wish to find v € H such
that

a(u,v) = f(v), wveH, (6.33)

where f is a linear functional on H. In fact, at this point one can think of
H being some Sobolev space H as above but also of the finite dimensional
trial space S(®;) of highest resolution. Let {V;} be an at most countable
collection of closed nested subspaces of H such that every v € H has at least

one expansion
v=> v
J
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which converges in H, in brief H =}, Vj.

The basic idea is to solve for each V; the problem restricted to V; and then
add these solutions up. This corresponds to (block) Gauss—Seidel or Jacobi
relaxation. The solution of the subproblems will be based on auxiliary inner
products b;(-,-) on V; which approximate a(:,-). Following Oswald (1994),
we write {H;a}, {V};b;} to express that each V;, H, are Hilbertian relative
to the scalar products b;, a. The subspace splitting

{H;a} =3 {Vj;b5)
7
is called stable if

|||v|||%b]_} := inf { ij(vj,vj) tvj € Vj,v= Zvj} ~ a(v,v). (6.34)
o ; I
Taking V; = S(®;), bj(v,v) := 229 (v,v), H = H*(Q), we see that the
norm equivalence (5.44) is a special case of (6.34). -Alternatively, setting
Vo1 :=8(®0), V; = S(¥;), 5 >0, v; = (Q; — Qj—1)v, bj(v,v) as before, it
is clear that [|v[|(;; < ||v|| As,- Now consider the following Riesz operators

~

T;, g; which interrelate the scalar products.

T, H—V;: b (Tv,v;) = a(v,v;),
(6.35)
gi€Vj: bi(gj vi) = flv;), v €Vj.

Defining B; : H — V; by b(v,v;) = (Bjv, v]) vj € Vj}, and recalling that
a(u,v) = (Cu v), we 1nfer that 7; = B; £, so that each application of
T; corresponds to the solution of a restrlcted (typically small) problem. A
central observation in this context is the following result; see Oswald (1994)
for the background and further references.

Theorem 6.8 Let

T::Z’Z}, gZZgj. (6.36)
J J

Then equation (6.33) is equivalent to the operator equation
Tu=g, (6.37)

which is called the additive Schwarz formulation of (6.33). Moreover, 7 is
selfadjoint positive definite and when H is finite-dimensional its smallest
and largest eigenvalue are Apin(7), Amax(7), where

A (T) = a(v,v)

a(v,v)
2R,

Amax(7) = sup
)= R,

respectively.
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Since

Amax(T)
/\min(T) ’

the condition of (6.37) is bounded by the ratio of the constants in the upper
and lower bound in (6.34). A corresponding asymptotic statement requires
the ratio of the upper and lower bound to remain uniformly bounded when
the dimension of H increases. The quantitative relevance of such statements
again depends, of course, on the problem at hand.

Theorem 6.8 can be deduced from the following result, which is interesting
in its own right and has several further applications mentioned below.

Theorem 6.9 (Nepomnyaschikh 1990) Let H, H be two Hilbert spaces
with scalar products (-, -)u, (-, ) gz, respectively, and with bilinear forms a, a
induced by symmetric positive definite operators £: H — H, £ : H — H.
Suppose that there exists a surjective bounded linear operator R : H — H
such that

Kko(T) = (6.38)

a(v,v)~ inf a(9,0):=|v|, ve€H.
e Hv=R%

Then P := RLIR*L : H — H is symmetric positive definite with

Amax(P) = sup —(2%),
ver vl

a(v,v)

Amin(P) = inf ol

Of course, Theorem 6.8 is obtained by taking H = {# = {v;} : v; €
Vi, 224 bi(vi, v;) < 00}; see, for example, Oswald (1994).

An interesting case is, for example, H = S(®;) for some (large J) where
the splitting consists of one-dimensional subspaces V; := S({#;r}). Thus
the corresponding Riesz operator 7 has the form 7 xv = c; x¢;x where

ik = a(v,05k) /b5 k(D) ks Djk)- (6.39)
Thus

Tv= alv, bir) o 4
]z%kg bik (ks 85, byx (@ i) 7 (640
Hence (6.34) means that {¢;x/b;x(¢jk, ¢5k)} forms a frame for {H;a}.
The BPX scheme and the hierarchical basis preconditioner are examples
of this type. To see this, let f(v) = (f,v), where (-,-) is induced by the
Ly inner product. Let B; be defined by b; x(u;k, vjx) = (Bjrujk, Vjk), SO
that 7, = B; +P; L, Pj) the orthogonal projection onto Vjx. Then one
can write

J
= (Z Z Bj_’kl,Pj,k) L=CL.

J=0keA;
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Thus, choosing bji(-,-) = 2%4(-,-) and Vi = S({djk}).k € Aj, Vjp =
S({ojr}), k € A; \ Aj_1, yields the BPX and hierarchical basis precondi-
tioner, respectively (see (6.29)).

There is obviously great flexibility in choosing the subspaces V;. In gen-
eral, realization of the operators 7; requires solving linear systems of the size
determined by V;. In the context of parallel computing one might accept
spaces V; of growing dimension. For instance, the V; could be chosen as
subspaces of H associated with a decomposition of the underlying domain.
A survey of applications of this type can be found in Chan and Mathew
(1994).

The proofs establishing the critical equivalence (6.34) are, of course, re-
lated to the concepts discussed in Section 5.3. The norm || - ||5,} can in
certain cases be evaluated exactly, which greatly simplifies the analysis;
compare Griebel and Oswald (1995a), and NieBen (1995). The bounds
- |||%bj} < af(-,-) typically involve approximation theory tools. The converse
estimates are often reduced to the validity of a strengthened Cauchy-Schwarz
inequality (recall Section 5.2), which in this context has the form

a(vj,vk) < kb5 (v, v5)bk(vk, V), vy € Vj, vk € Vi, (6.41)

where (7;x) should be bounded in #;. For a detailed discussion of these
issues, compare Griebel and Oswald (1995a), Yserentant (1993).

Again following Oswald (1997), we mention an interesting extension of
the splitting concept which aims at relaxing the assumption of nestedness
V; C Vjt1, as well as of conformity V; C H. This, again, is an application
of Theorem 6.9. It requires introducing mappings R; : V; — H such that
R:=3%;R;:]l;V; — H is onto and

Il 5.7,y = inf{ij(vj,vj) tv; €V v= ZR]'UJ'} ~a(v,v), v € H.
J J
(6.42)

In this case, 7 in (6.37) has to be replaced by 7’ := Zj(Rij—lR;)E,
where B; : V; — V; is now defined by b(uj,v;) = (Bjuj,vj)v;, v; € Vj.
Equivalently, one can write 7' = 3, R;7;, where 7/ : H — Vj is given by
b(T}v,v5) = a(v, Rjv;), v; € V;. See Oswald (1994), Griebel and Oswald
(1995a).

We now indicate a typical iteration based on (6.35) and (6.36). The
additive version A creates a sequence of approximations {u'} given by

J
ut =l 4w Z(gj — T;uh). (6.43)
=0

Here w plays the same role of a relaxation parameter as in the Jacobi or
Richardson iteration. Recall that each iteration requires the solution of
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variational problems on the spaces V. Perhaps the structure of the iteration
(6.43) becomes more transparent on recalling that 7; = B; £, so that

9; — ’Z}ul = Bj_lrl, where ! = f — Lu! is the residual from the last step.

Likewise, in the more general version (6.42), g; — ’Z}ul has to be replaced by
R;B;'Ryrt.
The multiplicative version M reads

W0 =
utl = J+l

)

generalizing SOR. The corresponding iteration operators are
Mp=I-wT, My=(-wTo)(I-wh)- (I -w).

The convergence theory is given by Bramble (1993), Griebel and Oswald
(1995a), Xu (1992) and Yserentant (1993). For the interpretation of these
schemes in the multigrid context, see Bramble (1993) and Griebel (1994).
Here we quote the following result from Griebel and Oswald (1995a).

Theorem 6.10 Assume that H is finite-dimensional and the algorithms
M and A are given by (6.43) and (6.44).

(i) A converges for 0 < w < 2/Amax(7). The optimal rate is achieved for
w* = 2/(Amax(7T) + Amin(7)) and equals

2
= min ||M =1—-—F-:.
A 0<w<2/A,,JLx Alla 1+ ko(7)
(if) Suppose (6.41) holds with v;; = 1. Then M converges for 0 < w < 2.
The optimal rate is bounded by

)\min (T)

<1 fminiZ)
PM = D max(T) + 1

For various modifications see Oswald (1997) and the literature cited there.

6.6. Finite element-based wavelets

The previous discussion shows that preconditioning matrices stemming from
Galerkin discretizations of elliptic operators of positive order does not re-
quire explicit knowledge of wavelet bases. Nevertheless, a number of recent
studies have addressed the construction and application of wavelets in a fi-
nite element context, to obtain wavelet-based stable splittings for Schwarz
schemes. Let us briefly postpone giving reasons why the additional effort
might still pay in this context, and first outline some ingredients of the
various approaches.
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Ar A

| 1 ]
1 1 9/10

1/10 1/10 1/10

NV

-3/5 -3/5 -3/5

Fig. 1. Pre-wavelets for H}([0,1])

Pre-wavelets

Recall from (6.24) that preconditioning based on a change of basis does
not require the transform T}l. Thus it suffices to make sure that the
scheme (3.26) is efficient, which means that the masks of the wavelets have
possibly small support. Most of the presently known FE-based wavelets still
refer to an underlying uniform grid structure for multilinear finite elements
on regular lattices hZ? (type-1 mesh) or to regular triangulations of the
plane which are generated from the standard uniform rectangular mesh by
inserting in each square element the southwest-northeast diagonal (type-2
mesh).

When dealing with meshes of type 1 restricted to the unit square O =
[0,1]?, say, one can employ tensor products of biorthogonal wavelets on
[0, 1] discussed in Section 4.4. For k € Z, e € {0,1}2, j > jo, they have the
form

¢e,j,k (l‘) = wely]}h (ml)wez,j,kz ($2)

where g ;x = @jk, Y1,k = ¥jk are the corresponding univariate gener-
ator and wavelet functions. When ¢ is the standard piecewise linear tent
function (1.15) and the dual bases are exact of order 2 as well, the mask coef-
ficients can be found in Dahmen et al. (1996b), and Dahmen and Schneider
(1997q).

In most cases, however, so-called piecewise linear pre-wavelets have been
used; see, for example, Griebel and Oswald (19955). Interior and boundary
wavelets are shown below in Figure 1.

Here, pre-wavelet means that these wavelets form uniformly Lo-stable
bases for orthogonal complements between two successive trial spaces. Hence
they also form a Riesz basis for L([0,1]). In this case the masks in the in-
verse transformations are not local but, as mentioned before, this is harmless
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here. Obviously the masks for the tensor product wavelets have 15 or 25
nonzero coefficients.

Piecewise linear pre-wavelets for meshes of type 2 have been constructed
by Kotyczka and Oswald (1996). Those of smallest possible support have
13 nonzero coefficients. The construction principle is to make an ansatz of
a linear combination of tent functions on the fine scale so that, for possibly
few nonzero coefficients, orthogonality to the tent functions on the coarser
scale holds. Usually, the difficult part is to verify that three such linear
combinations form a stable basis on each given level. Also, the adaptation
to the boundary is in this case more difficult than in the tensor product
case.

The resulting pre-wavelets still have relatively large support. Therefore
several alternatives have been proposed resulting in complement spaces that
are no longer orthogonal but are spanned by functions of smaller support,
while still exhibiting better stability properties across levels than the hier-
archical bases.

For instance, the discretization of the double layer potential equation on a
polyhedron in Dahmen, Kleemann, Proidorf and Schneider (1994a) involves
piecewise linear wavelet type functions of the form shown in Figure 2.

Fig. 2. Short support wavelets

The stencils in this case are

0 0 —1/2 0 0 0 0 —1/2 0
o 1 o |,\-121-172),l0 1 o0
~1/2 0 0 0 0 o0 0 —1/2 0

Here the central coefficient refers to a point in the coarse mesh, while all
neighbours refer to points in the next finer mesh. Its univariate counterpart
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for ¢ defined by (1.15) is

9(w) = ~ 39023 + 1) +6(20) = 3622~ 1), (6.45)

used by Dahmen et al. (1996a) to discretize the Helmholtz equation on a
closed curve. The fact that these functions actually span Riesz bases in
Ly was shown by Stevenson (1995b). More precisely, as pointed out by
Lorentz and Oswald (1996, 1997), the functions give rise to Sobolev norm
equivalences (6.1) for n < 3 in the range s € (—0.992036,3/2).

Motivated by earlier work by Hackbusch (1989) about frequency filtering,
an interesting systematic approach to constructing Lo-stable finite element
wavelet bases was proposed by Stevenson (19955, 1996, 1995a). Again let .S;
denote the space of piecewise linear finite elements on meshes of type 2 with
scale 277 = h. The central idea is to employ level dependent discrete scalar
products which on those spaces are uniformly equivalent to the standard
Lo-inner product. For instance, writing

[ f@)g(@)dz = (f.900 = 3 (.90 (6.46)
Q

T€T;

where 7; is the triangulation of level j of €2, the terms (f, g), are replaced
by a quadrature rule. The rationale is that orthogonality with respect to
discrete inner products is often easier to realize and corresponding masks
are shorter, which gives rise to functions with smaller support. Thus, when

7 = [z, 22, 23] € T; has vertices 2!, %, 23 one can set

(f:9)rj = Z fz (6.47)

Now, given the usual tent functions ¢;; from (4.1) as generators for Sj;, one
then seeks for a biorthogonal collection Z; C 511 of linear combinations on
the next higher level, that is,

(®;,%;) =1, (6.48)

where the (;; € Z; have possibly small support. These auxiliary collec-
tions E; are then used to construct complement functions in S;;1 which are
orthogonal to S; relative to the level dependent inner product. As men-
tioned before, one exploits the fact that orthogonality with respect to the
discrete inner products is much easier to realize than for the standard inner
product. Details and concrete examples can be found in Stevenson (19955,
1996, 1995a). In light of Section 5.2, the discrete inner products have been
used here to construct a Riesz basis in Ly without identifying the dual basis
relative to the standard inner product. Compared with orthogonal split-
tings, one takes advantage of significantly smaller filters.
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Stabilization of hierarchical bases

A further alternative has been proposed by Carnicer et al. (1996) for re-
finements 7T; of arbitrary triangulations described in Section 4.1. Again
denoting by ®; the Lo-normalized tent functions relative to 7, a biortho-
gonal collection E; is constructed which consists of (discontinuous) piecewise
linear functions. To describe this briefly, let A; again denote the set of ver-
tices of triangulation 7; and let 7 = [k, m,p] be a triangle in 7;. Then
there exist unique affine functions o7, such that Tf $jq(@)0] (@) dT = 84,91,

q,q € {k,m,p}. Set

0, ¢ supp ¢k,
where nj is the number of triangles having k as a vertex. Thus (6.48)
(®;,E;) = I again holds, and the question arises of how to identify a stable
basis ¥; for the complement space

W = {{(9,Ej+1)0®j+1 — (9. 55)a®; : g € S}, (6.50)

induced by the projectors (-,Z;)q®;. As in the previously discussed case,
this can be done by exploiting the fact that some initial complement space
is available, namely the one spanned by the hierarchical basis described in
Section 4.1. To distinguish it, it will be denoted here as

Uj = {gjrh: k€ Bjp1\ A5} (6.51)
At this point the techniques described in Section 3.5 come into play. In

particular, (3.40) applies. In fact, Mo, M1, G;0, G;1 are given by (4.2),
(4.4), (4.6), (4.7) respectively. Thus, with Z; defined by (6.49), the new
stable completions M ; defined by (3.40) are readily computable. In view
of the form (3.39) of the new basis functions, this process may be viewed
as a coarse grid stabilization. The construction is not restricted to regular
triangulations. In the case n = 2 and the special case of regular triangula-
tions of type 2 (see above), the stabilized complement basis functions have

the form

Lo (z), zeT,7C é;
Ginl(@) r—{ T3k T ETT - SUPP Ok, (6.49)

4
ik = Gk — Dbk, Kk EDjr\A, (6.52)
=1
where k are the midpoints of the edges in the triangulation 7;, and the k(1)
denote the vertices of the parallelepiped having the edge associated with k as
a diagonal. The construction obtained above through (6.49) is a special case

of a whole family of stabilizations (6.52) of the form (Lorentz and Oswald
1996, Lorentz and Oswald 1997)

1
a1 = az = q, a3=a4:§—a, a € R, (6.53)
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namely for a = 1/6. The corresponding basis for the uniform setting is shown
by Lorentz and Oswald (1996, 1997) to satisfy (6.1) for s € (—0.35768, 3/2).
The choice a = 3/16 from Lorentz and Oswald (1996) gives a somewhat
larger range s € (—0.440765,3/2), which is maximal in this class.

There is a closely related but slightly different approach to such coarse
grid stabilizations, proposed by Vassilevski and Wang (1997a). Recall that
the multiscale transformations T associated with the hierarchical bases \Il
from (6.51) are extremely efﬁment Since it only involves nodal basis func-
tions, not with respect to the full bases on each level but with respect to
the complements only, it is even more efficient than BPX. The objective is
to stabilize the hierarchical basis while retaining as much of its efficiency as
possible. When switching to another stable completion of the form (3.40),
the efficiency of ’i‘j can still be exploited. In fact, the multiscale transform-
ation T; can be performed in two stages. First perform a step of Tj and
then correct it, on account of (3.39) or (6.52), by terms involving only the
coarse scale generator basis functions. Relevant algorithmic details are given
in Sweldens (1996, 1997). The idea is to construct complement functions,
that are close to functions which span the orthogonal complement between
two successive trial spaces. 1 would like to deviate from the original ap-
proach and phrase this here in terms of the stable completions described in
Section 3.5. Again, straightforward computations show that, given Mj,l as
above,

My = (T— (M;o(®;, 8;)7H@;, @541) ) ) My, (6.54)

gives rise to a basis ¥T = <I> +1 M1 spanning the orthogonal complement
of S(®;) in S(®;41). In other words

Lj = —(®;,®;) " (®), ®41)M;1, K;=1, (6.55)

(see (3.37)) yield a suitable new stable completion. Note that, by (3.4),
(®;,®+1) = M;o(®j1,Pj+1). Of course, the matrix (®;, ®;)~! is dense
and so is M;;. However, to compute M, 1d for any coefficient vector d
it suffices to compute Mj,ld =:d and (<I>j,<I>j+1)& =: b. Next, instead of
computing (®;, ®;)~!b exactly, one performs only a few relaxation sweeps
for the linear system

<q)j’ ‘bj)y =b,

followed by d— M, oy. Note that (®;, ®;) is positive definite and uniformly
well conditioned, since the ®; are uniformly stable. Further details are found
in Vassilevski and Wang (1997a), Vassilevski and Wang (1997b). Special
cases again lead to (6.52) with coefficients g; as in (6.53) with a = 5/48 and
s € (0.248994, 3/2) (Lorentz and Oswald 1996).
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Efficiency and robustness
Which of these options should be preferred? There is, of course, no uni-
form answer. The decision would depend on the precise problem, on the
mesh and on many other side constraints. As soon as one fixes a particular
model problem, some aspects become prominent. Nevertheless, there have
been some recent comparisons that provide interesting information. These
comparisons address two important issues, namely efficiency and robustness.
Firstly, efficiency comparisons are discussed by Ko, Kurdila and Oswald
(1997) for the model problem

—Au+qu=fon, wu=0ondN, (6.56)

where Q C R? is a simple domain such as a rectangle, so that wavelet-based
preconditioners can compete without struggling too much with technicalit-
ies.

Poisson-like problems

The tests in Ko et al. (1997), Lorentz and Oswald (1996) and Lorentz and
Oswald (1997) indicate that, for the Poisson problem ¢ = 0 in (6.56), the
BPX scheme is superior to the wavelet-based methods, both with regard
to the number of iterations needed to ensure a desired accuracy and to
the cost of each iteration. As for the cost, this is obvious (recall Remark
6.7). Several types of wavelets, such as Daubechies wavelets, the above finite
element-based wavelets, and so-called multi-wavelets, were included in the
comparisons. For this kind of problem, the scheme based on Daubechies
wavelets appears to be the weakest, since the cost per iteration is higher
due to larger masks, while a careful study of corresponding condition num-
bers(Lorentz and Oswald 1997) shows that the frame bounds for the H{-
frames behind the BPX scheme are tighter than those of all wavelet bases.
However, the finite element-based wavelets with small support come quite
close. The condition numbers produced by the BPX- and by the coarse grid
corrections (6.52) with @ = 1/6 and a = 3/16 are reported to stay below 11
(Lorentz and Oswald 1997). The fact that the wavelets also form a Riesz
basis in L9 is not crucial in this case.

Helmholtz problems

The situation changes when ¢ > 0 in (6.56) is increased. Now the additional
zero-order term starts to affect stability. The efficiency of the BPX scheme
in its original form starts to deteriorate. However, a suitable (inexpensive)
modification, namely including a properly weighted zero-order term in the
auxiliary form b; (-, ) has been observed to stabilize it (Oswald 1994). The
condition numbers for the wavelet schemes are now smaller and the finite
element-based wavelets with small support do quite well (Stevenson 1996,
1995a. These schemes are in that sense more robust for the class of prob-
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lems (6.56). The reason is that, in contrast to the H}-frames behind the
BPX scheme, the wavelets form a Riesz basis for a larger range of Sobolev
spaces including Lo, so that the zero-order term gu is handled better. In
particular, when ¢ gets very large, the condition numbers for orthonormal
wavelets tend to one, simply because the operator approaches (a multiple
of) the identity. Eventually this starts to offset the higher cost per itera-
tion. This is of particular importance for implicit discretizations of parabolic
problems

0

at"
where for each time step an elliptic problem £ = I — At A has to be solved.
Here wavelet preconditioners work well for a wide range of time steps without
additional tuning.

The same robustness issue is also treated by Stevenson (1995b), using
the wavelet (6.45) derived from the frequency decomposition approach men-
tioned in Section 6.6. It is shown to be superior to the BPX scheme for this
type of problem with regard to efficiency and robustness.

Of course, when the solution is very smooth, the higher cost of a higher-
order wavelet scheme per iteration may well be offset by the better approx-
imation. Also, the effect of adaptive refinements has not been taken into
account in the above comparisons.

= Au, (6.57)

Anisotropies
A similar observation can be made for problems of the type
0%u %
83’:12 31?22
where (2 is again a rectangle for simplicity and ¢ is small. Such anisotropies
aligned with coordinated lines arise, for instance, when employing boundary-
adapted grids with high-aspect ratios in flow computations. Griebel and
Oswald (1995b) compare multilevel Schwarz preconditioners based on tensor
product pre-wavelets (see Figure 1) with nodal basis oriented splittings for
problems of the type (6.58). Again, the latter method is typically twice as
efficient as the wavelet scheme when using proper tuning, while the wavelet
scheme is clearly more robust relative to varying ¢ and ¢ in (6.58). Moreover,
in the 3D case it still works in combination with sparse grid techniques.
The same issue is treated by Stevenson (1996) (for ¢ = 0) with the aid
of the modified frequency decomposition multilevel schemes discussed in
Section 6.6. Moreover, triangular-based wavelets constructed via discrete
inner products are applied by Stevenson (1995a) to several types of second-
order elliptic boundary value problems with leading term div (A grad). In
particular, the case where A is a piecewise constant diagonal matrix with
large jumps is considered. The main result is to show that the proposed

—€ +qu=fon$, wu=0onodf, (6.58)
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wavelet-based multilevel scheme is robust for the class of problem where
A exhibits possible anisotropies along the three directions of a type-2 grid,
when this mesh is used for the discretization.

More detailed information about comparisons can be found in Ko et al.
(1997), Lorentz and Oswald (1996) and Lorentz and Oswald (1997). In
summary, it seems that the robustness issue is in favour of wavelet-based
discretizations. One should not forget, though, that the comparisons did not
include multiplicative multigrid schemes, which are usually more efficient
than additive counterparts such as the BPX method. Of course, the story
changes again when nonuniform grids and complicated domain geometries
are considered. Classical wavelets no longer apply directly (see below for a
two-stage approach), while the above coarse grid corrected wavelets are still
defined.

Finally, a more interesting question occurs when adaptivity is employed,
for instance, for a domain with reentrant corners. To my knowledge, direct
comparisons have not yet been made. It will be seen later that wavelets
seem to have a great potential in this regard.

7. The ideal setting
7.1. Preliminary remarks

Preconditioning is only one aspect of wavelet schemes. At least for posit-
ive order operators it does not require the full sophistication of wavelets,
since simpler suitable frames are seen to work as well, often even better,
and for more flexible meshes. In this sense, preconditioning puts only weak
demands on the wavelet as a discretization tool. To exploit the full potential
of wavelets one is led to ask for more. Two possible directions are, firstly, to
consider operators such as integral operators whose conventional discretiza-
tion gives rise to dense matrices, or, secondly, when dealing with differential
operators, to try to diagonalize L in the sense of Section 1.5 (a). We will
first address the latter issue. Of course, one cannot expect such an objective
to be feasible under the most general circumstances. The basic rationale
is to develop a two-stage process. First design highly efficient schemes for
an ideal setting (ideal with regard to highest efficiency and availability of
the tools) and then try to reduce realistic problems to the ideal case at an
additional expense which, however, should be of lower order. As indicated
in Sections 4.2 and 4.3, wavelets unfold their full potential when working on
the whole Euclidean space R" or on the n-torus R"/Z"™. 1 will refer to this
as the ideal setting.

A great deal of effort has been spent on studying elliptic operators £ of
the form (2.4), where a > 0 and A(z) is a symmetric matrix satisfying

sup [|A(2)]| < oo, ETA(2)¢ > 8%, z,6 €RT, (7.1)
TERM
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for some § > 0, and whose coeflicients satisfy certain (weak) regularity prop-
erties. The subsequent discussion mainly reflects related work by Angeletti,
Mazet and Tchamitchian (1997), Liandrat and Tchamitchian (1997) and
Tchamitchian (1996). Typical questions to be studied are

i) the continuity of £~! in Sobolev scales W*? depending on the coeffi-
g
cients of A(x)
(ii) the boundedness of associated Galerkin projections in this scale
iii) eflicient numerical procedures for the approximate solution of
(iif) p pp

Lu=f onR" or R"/Z" (7.2)
with the aid of wavelet bases.

These questions are clearly closely interrelated. Our main concern here
will be (iii), while recent studies of (i) and (ii) are given by Angeletti et al.
(1997).

Recall from Section 4.2 the format of the biorthogonal wavelet bases ¥ =
{¥» : A € V} and likewise ¥ to be used when Q = R™. By (4.38), one has
to deal with 2™ — 1 mother wavelets v, e € E, := {0,1}" \ {0}. In this
case it is convenient to take jo = —oo as the coarsest level so that V= V_.
When working on the torus it will always be tacitly assumed that jg > 0 is
fixed. In either case, the indices A € V have the geometric interpretation
A=27(k+ shkez, j€Z,j> jo, e € E.. We continue denoting by d,d
the order of polynomial exactness of the spaces S(®;), S (<f>j), so that the
direct inequalities (5.1) hold with d, d, respectively.

The principal goal is to diagonalize the operator £ in (7.2) as indicated
in Section 1.5 (a). The relevant theoretical background is the theory of
Calderén-Zygmund operators. To support the understanding of the sub-
sequent developments I include some brief comments in this regard, mainly
following Tchamitchian (1996).

7.2. Vaguelettes and Calderon—Zygmund operators

The subsequent discussion first follows the original development that has
been tailored to orthonormal wavelets and therefore admits wavelets with
global support as long as there is enough decay. Orthonormality is not
crucial, though, and analogous statements can be made for the biorthogonal
case as well. So assume that the 9, decay rapidly along with their derivatives
up to some order 9 > 3. For |a| = ry, 0%, is supposed to be defined almost
everywhere while ¢, € C""}(R"), e € {0,1}™

In addition to the wavelet basis ¥ we consider another family © = {6, :
A € V} which is related to ¥ by

TT =0, (7.3)
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for some linear operator 7. Ultimately, we will be interested in 7 = (£~1)*.
Unfortunately, the 8y will not arise from finitely many mother functions by
means of dilation and translation. However, in cases of interest to us, the 8,
still share the following properties with the ¥, A € V: there exist positive
numbers C, ¢, r and a non-negative integer d € [0, g), such that for A € V_,

Or@) < C22 (142 —A)) ", zer™ (7.4)

Furthermore, 8y € CU/(R™), (|a| being the largest integer less than or equal
to a), and for all o« € Z%, |a| < |r] one has

0°0x(2)| < €D (14275 - A)) Y, mern (75)

Moreover, for |a| = |r| the 0% are Holder continuous, that is,

10%60x(z + h) — 8°0,(z)| < C29(3+7) |p)r—r] (1+2|z - A|)_n_q, z € R,

(7.6)

and for every polynomial P of order at most d one has

/ P()0r(z)dz =0, AeV_. (7.7)
R‘n
The set © is called a family of vaguelettes with index (ci, q,7). Note that
the kernel of the operator 7 defined by (7.3) has the form

K(z,y) = Y 0\(x)day). (7.8)
AeV

One can then show (see, for instance, Tchamitchian (1996)) that the estim-
ates (7.4), combined with corresponding standard estimates for the wavelets,
imply that there exist constants C, 6 > 0, such that

|Mawsﬁga,w¢u (7.9)

and
T
|me—wa»HKmm—K@,n<qfﬁ%g, (7.10)

when |z—12'| < |z—y|/2. An operator T, such that for any two test functions
f, g with disjoint compact supports

(T f,9) / K(z,y)f(y)g(x) dydz,

is called a Calderdn-Zygmund operator (CZO) if T is continuous on Ly and
K satisfies the so-called standard estimates (7.9), (7.10). The above notions
are now interrelated by the following result, whose proof can be found in
Meyer (1990).
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Theorem 7.1 Suppose © is a family of vaguelettes with index (ci,q,r).
Then 7 defined by (7.3) extends to a CZO. It is continuous on W*P(R™) for
1 < p < oo and |s| < inf(rg,7,d + 1,¢). The corresponding operator norms
depend on the parameters and on the constant C in (7.4)—-(7.7).

Let us denote by LM.A the collection of operators 7 such that © = 7T¥
is a family of vaguelettes.

Theorem 7.2

(i) LMA is independent of the choice of ¥ (provided that r¢g > 0).
(i) LMA is an algebra which is stable under taking adjoints.
(iil) LMA is exactly the set of CZOs 7 such that 7(1) = 7*(1) = 0.
(iv) LMA is not stable under taking inverses.

Assertions (i) to (iii) are due to Lemarié (1984); (iii) is related to the T1-
Theorem by G. David and J. L. Journé, which characterizes the continuity
of an operator 7 satisfying the estimates (7.9), (7.10). This result will be
mentioned later again. As for (iv), we refer the reader to Tchamitchian
(1996), and its implications will become clearer later on. Since a CZO takes
L(R™) into the space of functions of bounded mean oscillation (BMO),
7 (1) and T7*(1) are indeed defined. Recall that a locally integrable function
f belongs to BMO if and only if, for any cube C, there exists a constant a
such that

&1 [ 1f@ —alde <1,
C

where |C| denotes the volume of C.

The following characterization of LM.A in terms of matrices will be im-
portant in the present context. Let M denote the set of matrices A such
that for some v > 0 one has

o= A=V (v+%)
(1 + 2min{|/\|,|)\'|}|/\ _ )\/|)1+'7'

Thus the entries of A decay with increasing difference in scale and spatial
location of the indices A, \'. Recall that this estimate is of the type (1.11).
In fact, essentially the same argument can be employed to show that, when
f0,=0, X€V,then (0©,0) € M. Moreover, the following result can be
found in Angeletti et al. (1997).

Theorem 7.3 7T belongs to LMA if and only if the matrix (¥, 7¥) be-
longs to M.

|[Aax] S

(7.11)

Next, we will describe an approach, initiated by Tchamitchian (1987),
which is based on the above concepts and aims at avoiding the solution of
linear systems essentially by diagonalizing the operator.
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7.8. Constant coefficient operators

The basic strategy is to proceed again in two steps: first treat carefully
the case of constant coefficient operators and then use a freezing coefficient
technique. We will specify the operator £ from (2.2) first to the special case
where aqo3(z) = aqg are constant so that

Lu=— Y aqp0°0° +a. (7.12)
leel,1B1=1
The operator £ will always be assumed to be elliptic, which here means that
the principal part og(y) of its symbol o is strictly positive on R™, that is,

oo(y) == Y. aapy®™P >8>0, yeR", o(y) =oo(y)+a. (7.13)
lalBl=1

We follow Liandrat and Tchamitchian (1997) and try to solve Lu = f con-
ceptually by applying the inverse £~! to the right-hand side f. Although
at first glance this may contradict basic principles in numerical analysis, it
does have tempting aspects, as shown next.

Suppose that ¥, ¥ are biorthogonal Riesz bases in La(R"). Then the
solution u of (7.2) has the form u = d7 ¥ with unknown coefficient sequence
dT = (u, ¥). Inserting u = L~1f, one obtains

d” = (u,¥) = (L71f,0) = (f,(L7)"T) = (£,6), (7.14)

that is, the roles of 7 and ¥ in (7.3) are played here by (£!)* and ¥,
respectively. Thus the solution u of Lu = f is formally given as

u={f,O)V. (7.15)

Proposition 7.4 (Angeletti et al. 1997) The collection ©, defined
by © = (£71)*¥, is a family of vaguelettes.The constant C in (7.4)—(7.7)
depends on the ang and ¥, ¥ but not on a.

Thus the image of ¥ under (£71)* still has nice localization properties
reflected by estimates (7.4)—(7.7). This suggests the following approach
(Liandrat and Tchamitchian 1997).

A projection scheme

A natural idea is to compute an approximate solution of (7.2) by truncating
(f,©). Fixing any finite A C V, this corresponds to projecting u into the
finite-dimensional space Sy = S(¥p) U = {¥x : A € A}, (see (3.43)), that
is,

up = (u, Up)Wp = (f,04) V4. (7.16)
Note that this is a Petrov—Galerkin approximation (6.2).
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Convergence

Under assumptions (7.13), £ is also a boundedly invertible mapping from
H?*3(R™) to H*(R™), s € R. Thus, noting that, by (7.15), upn = Qau =
QAL7Yf, one has up — u = (Qp — I)L~1 f. Employing our direct estimates
(5.1) (for p = 2), we obtain

lun = ulle, = [|@a = DL, 5 279ONLT fllga,  (717)

where j(A) = max {j : [A\| < j = X € A}. Continuity of £~! in the Sobolev
scale gives

lua = ullz, S 279N f || . (7.18)

Analogous estimates for the spaces W*P are obtained in exactly the same
way as long as one has continuity of £~! (see question (ii) in the Section 7.1).
Moreover, standard interpolation arguments yield

lus = ullz, < 279W| a2, d>s>2. (7.19)

~

Estimates of this type are very crude. They guarantee convergence as long
as the spaces Sy include sufficiently many low frequencies, that is, j(A) grows
with #A. The interesting part, of course, concerns the adaptation of A to
the problem at hand, which may result in a selection of highly nonuniformly
shaped subsets A C V. In view of (7.16), this is closely related to the next
point.

7.4. Evaluation of (f,O4)

By (7.15), the success of the approach hinges on identifying and computing
the significant coefficients of (f,©), represented here by the finite array
(f,©A). The important point is that, by Proposition 7.4, £L™* is a CZO;
here and elsewhere, we shall write £~* instead of (£*)~!. Hence, according
to (7.11), £7* has a quasi sparse matrix representation.

Noting that (Lu)"(y) = o(y)i(y), where o is by (7.13) strictly positive on
R™, the definition (7.14) of © means that

1 PR 1
(f,0\) = W(fﬂx) = @nn

Since the wavelets are well localized in Fourier space, one could employ

(F,57 4.

quadrature to compute f, 571 ) up to any desired precision.

Projections into S and convolutions

We now describe an alternative approach proposed by Liandrat and Tcham-
itchian (1997). Due to the vaguelette estimates, §) belongs up to a desired
tolerance to S(®||4+p) for some p € N, which depends on £, ¥ and ¥ but
not on |A|. This suggests projecting f into the space S(®|y4p). As before,
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we will always denote by @; or Q4 the canonical projectors onto the spaces
5(®;), S(¥4), respectively. This suggests replacing (f,0x) by (Qprj+pf>0)-
In fact, since

[(£305) = (@3 f, 0] < I Fllz.ll(T — @7)0A]l L,

the precision depends on the approximation properties of the spaces S(®;)
and on the regularity of the 6y and hence of the i,. Now suppose |[A| = j
and write
p—1 p—1
Qjtpf = Qjr1f + Y Qi1 — Qi) f = cF @ + AT, ¥4,
=1 =1
where c;ﬂl =(f,®j+1) , df+l = (f, ¥;41), so that

p—1
(Qiapf,0x) = €Ty 1 (Bjir1,00) + D AL (W44, 03). (7.20)
=1
This amounts to discrete convolution of the wavelet coefficients of f with
filters that depend only on ¥ and £. To compute these filters once and for
all, one can again resort to Fourier transforms.

Moreover, if the right-hand side f is smooth except at isolated points,
then only a small number of the coefficients d) = (f,v,) exceed a given
threshold in magnitude. The sequences (¥;1;,0,),!=1,...,p— 1, describe
how the wavelet coefficients dy, |A\| = j + [, are smeared by the application
of £7*. Thus (7.20) is to be applied to the compressed arrays of wavelet
coefficients, which result from thresholding.

Let us first add a few comments on the structure of the sequences (¥, 6y)
which can be viewed as one column of the matrix (¥;;;, ©;) where ©; :=
{6x : |A] = j}. Recalling the two-scale relations (3.4) and (3.8), U] =
@}+1Mj,1a (which is here stationary in j but would sizewise depend on j in
the periodic case), one obtains

(U541,05) = (Wypp, L£705) = MY, (Bj4011, L7°D541)M )

= M (P41, L7140 M 410 - - Mjp1,0Mj 1
~ (7.21)
Thus, once the arrays Fg := (&4, L7*®,) are known, the matrices (¥;,;,0;)
are obtained with the aid of pyramid-type schemes like (3.26). Moreover, a
typical entry of F; has the form

(Sakr L7 Bat) = (27) ™o 5 001)

" = . 7.22
= e [dwaen) ety

RTL
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As for the cost of these operations, let us consider the periodic case (see
Section 4.3), where J denotes the highest discretization level and p as above
is fixed. Suppose that the arrays Fy have been (approximately) computed
once and for all in an initialization step. Note that the fast decay of o(29y)~?
for large g implies that F, can be ever better approximated by a bounded
matrix with small bandwidth. Hence the computation of all vaguelette coef-
ficients on level r boils down to

p—1
— T \/ T \/ \/ \/
(QH—pf, @r> = Cr+1Fr+1Mr,1 + Z d,«+lM,«T+l’1Fr+l+er+l,O o Mr-i-l,OMr,l-

=1
(7.23)
Thus, when the wavelets have compact support and each F, ;1 is replaced
by a sparse matrix, this requires the order of 2("+p)n (n being the spa-
tial dimension) operations, where the constant depends on ¥, ¥ and the
accuracy of F,;+1. Consequently, the computation of uy is of the order
2+IADR  Np, Ny = dim S(®4|), where |[A]| := max{|]X\| +1: X € A},
with a constant depending on p. Note that when rapidly decaying wave-
lets with global support (but very good localization in Fourier space — see
Section 4.2) are used, the matrices Mo, M; 1 are no longer sparse but, in
the periodic case, are circulants, so that FFT can be employed to limit the
order of operations to Ny log Nj.

On the other hand, the above work estimate has been very crude. In fact,
when the right-hand side f is smooth except at isolated points, only very few
of its wavelet coeflicients dy are expected to exceed a given tolerance € > 0.
Due to the localization and cancellation properties of the vaguelettes 65, the
coeflicients (f, 0y) are expected to exhibit similar behaviour. In fact, since
L~* is a CZO the decay of the entries in (¥;;, ©;) is governed by estimates
of the form (7.11), and the spread of the wavelet coefficients of f due to
L7* can be seen from (7.20). This suggests computing (f,8)) or, better,
{Qx+pf>0x) only for those A in a certain neighbourhood of the significant
coefficients of f. The number of these coefficients may, of course, be much
smaller than dim S(®4|). A more formal treatment of this issue in Liandrat
and Tchamitchian (1997) is based on the notion of (g, s)-adapted spaces.

Nevertheless, it does not appear to be completely obvious how to carry
out all computations without requiring the full complexity of the highest
discretization level at some point. In fact, while thresholding the arrays
d,4; on the right-hand side of (7.23) facilitates the successive multiplication
with possibly very short vectors, the first summand involving ¢, does not
seem to be compressible in this form.

Remark 7.5 Another point concerns the various tolerances in the above
procedure. Uniformity of the work estimates in #A are ultimately of lim-
ited value when the involved tolerances and thresholds are kept fized. In
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fact, increasing #A should produce better overall accuracy. Correspond-
ingly tighter thresholds, in turn, are expected to require a larger p, and
hence a higher computational cost that may no longer stay proportional to
#A. Questions of this form will be encountered in similar contexts several
times.

A hybrid scheme

There exist several variants of the above scheme (see, for instance, Ponenti
(1994)) among which I would like to mention the hybrid scheme proposed
by Frohlich and Schneider (1995), which differs from the above procedure
in an essential way. The main point in Frohlich and Schneider (1995) is to
economize the evaluation of the vaguelette coefficients (f, ) by incorporat-
ing interpolation techniques. Again it is designed for the periodic case. For
simplicity, we consider bases on R and refer the reader to Section 4.3 for
standard periodization (see also Frohlich and Schneider (1995)) and tensor
product versions for the bivariate situation.

m
Let £ =37 _0am (%) be an elliptic operator; that is, as before, its
symbol o(y) 1= 3_;,—0am(iy)™ is strictly positive on R. By construction,

the family © := LV is biorthogonal to © = (L71)*¥. Hence one has
f = (f,0)0. (7.24)

Thus, instead of approximating f first by projecting into the spaces S(®;),
as in the previous approach, one could try to expand f approximately with
respect to ©. Thus, consider the spaces

Sey:=8({0,€®: )\ <J})=S(LD,). (7.25)

The idea is now to employ Lagrange interpolation to efficiently obtain an
approximation to f in S j, say. Therefore one is interested in finding the
fundamental Lagrange functions

Li(x) = gk (L) (z) = gTLD;(x), (7.26)
kE€Z
such that
Li(277k) = éok, k€L (7.27)

This is equivalent to saying that
L= (L;(277),8( = k))e™ =2 3 L;(2 (y + 2nk)).
kez keczZ
Standard arguments (Dahmen et al. 1994¢, Frohlich and Schneider 1995)
yield
~ o A 2‘.7
Li(y) = _a(y)9(277y) ,
Z o(Qy+ 22xk)p(y + 27k)
kez

(7.28)
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which, of course, requires the sum in the denominator to be nonzero.
Recall that, by (7.14), the solution u of Lu = f is given by

u={(f,LT*®0)®y + (f,O)V. (7.29)

In order to project the right-hand side f first into S, ;, one can use the
samples of f at 27/k. In view of (7.27),

=Y f(27k)Ls(z - 277k) (7.30)
kez
interpolates f in S¢ ;. Thus, to obtain an approximation to the coeflicients
in (f, ©7), say, one has to rewrite f; in (7.30), in view of (7.24), in terms of
©7 = £¥7. Since this is the central point, we describe this change of bases
in a little more detail. Let L; = (L;(- —277k) : k € Z) and define
D, := (Lj,0;1), j=1,...,J, D_;:= (Lo, (L 1)*®), (7.31)
f]‘ = (f](2_3k) (ke Z).
Since fy € 5,7, it can be expanded as
fr=fTL; = (§TL,,L7*0,) Ly =] (L, LT*0,)LD,.

Now, combining (3.11) and (3.13) with Proposition 3.8, one obtains T =
<I>J 1My 10+ \IIJ 1M5_, ;. Substituting this into the above relation and
using (3.12) yields
fr=fT (L, L7*®; )L 1 +£T(L;,0,.1)0, 1, (7.32)
where
fro1=fN L, LT7®; )LD 1 € Sr,y-1. (7.33)

Thus we have determined the vaguelette coefficients (f,©-1) =~ (f;,0,-1)
of f relative to © as

d;_1 =f] Dy, (7.34)

where Dy is given by (7.31). To continue this process, one only has to
determine the samples of f;_; defined in (7.33) on the coarse grid, that is,

fro1277 k) = fr(2772k) —dY_,0,1(277k), (7.35)

once one has computed ©;_; = L¥;_;. Instead of performing (7.35) ex-
actly, one can discard entries in dj_; that stay below a certain threshold,
to generate step-by-step compressed vectors d;, 7 < J, such that

ujy = ng’o + Z d;r\I/j
0<5<J

approximates u in (7.29). The following algorithm, from Fréhlich and Schnei-
der (1995), does exactly that.
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ALGORITHM 2 (FS)
Initialization: Compute the filters D; and L¢g 0, L1050, 7 =0,...,J — 1.

(1) Set j = J and determine f;(277k) = f(2=7k), k € Z.
(2) Forj=J-1,J-2,...,0,

. — T .
d; = fj+1DJ+1?

£ = (fi27k):kez), fi(27k)=f1(277k) —dTO;(27 k).
(3) Compute cg with the aid of the filter in (Lo, £~*®).
A few comments on this scheme are in order.

o When the change of bases is done exactly and no thresholding is ap-
plied, the above scheme is a collocation scheme.

e Instead of starting with a set ®; of orthonormal scaling functions as
in Frohlich and Schneider (1995), we have kept the flexibility of using
biorthogonal pairs ®;, ®;. In Frohlich and Schneider (1995), orthogon-
ality was paid for by infinite masks which require additional truncation.
Starting with biorthogonal spline wavelets (4.25), the collection © still
consists of compactly supported functions. Likewise the representation
of uy involves only the compactly supported functions in ¥ and ®.
This might favour embedding techniques for more general domains. It
is clear that the L; have typically global support but decay exponen-
tially. Here the actual computation requires a truncation. Of course,
the D; are obtained by computing only one mask, which involves trun-
cation of the vaguelettes too. The matrix formulation for the periodic
case is identical once Z is replaced by Z/2Z.

e In Frohlich and Schneider (1995), it is assumed that a reduced set
A C {X: [N < J} is given from the start. The above algorithm is
formulated there in a way that takes advantage of this data reduction.
This requires a priori knowledge about the solution u. Such informa-
tion is often available when dealing with time-dependent problems and
an initial guess of A can be obtained from the approximation on the
previous time level. In this case the samples of f are not required on
the full grid of level J. This can be incorporated above as well by
requiring samples only at places determined by significant vaguelette
coeflicients.

The scheme is applied by Frohlich and Schneider (1996) to Helmholz-type
problems as well as to nonlinear parabolic PDEs and to the computation of
flame fronts. The experiments indicate dramatic savings if the computation
can be fully confined to the significant wavelet contributions.
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7.5. Freezing coefficients

The numerical feasibility of the above vaguelette schemes hinges in an es-
sential way on the constant coefficient model problem. Let us now sketch
some ideas from Lazaar, Liandrat and Tchamitchian (1994) about how to
extend these techniques to the case of non-constant coefficients. Roughly
speaking, an exact solver on a coarse scale is employed in conjunction with

a freezing coefficient/vaguelette scheme on higher scales. For simplicity, we
consider the univariate case n = 1 only, that is, L =7 — a% (u(x)%) where

v(z) > v > 0 is Lipschitz continuous. Here we have £ = L*.
The objective is to evaluate a projection of the inverse £~1. Consider the
Galerkin projection of the low-frequency part

Ag = Qq(Q;‘EQq)_lQ;‘ (7.36)

of the inverse, where Qqf = (f, @q><1>q. Due to the variable coefficient v(z),
the evaluation of £714, is not feasible where, as before, A = 277 (k + %)
Instead one defines functions 8 by

d2
da?

which, according to the preceding discussion, are vaguelettes (see Tchamit-
chian (1997)), so that the operator P, defined by

—v(A)—=0xr =15, AEV, (7.37)

P ={ ¢ A28 (7.38)

is a bounded mapping from Lo(R) to H?(R). Here, P, is often termed a
parametriz of £, that is, the exact inverse of an approximation to £ at high
frequencies. In fact, by definition, one has, for |A| > g,

~ d d d?
LPg(Pr) = Ox - %(Vf') - V(/\))Zl;@’\ - V(/\)w@A
=1 Rg(¥r) +¥n,
while £P,(4,) = 0 for |A| < g. Hence one obtains

and one can show that (Lazaar et al. 1994)
IRogllz. < 2799z, (7.40)

Now A4 + P, is expected to approximate L1 well. In fact, a von Neumann
series argument yields the following theorem.
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Theorem 7.6 (Lazaar et al. 1994) Let U, := I — L(Ag + Pg). Then
42|z, < 279 so that, for ¢ sufficiently large (depending on ¥, ¥ and v),

o0
L7 = (Ag+Py) > U (7.41)
=0
As for the numerical realization, choose some J > ¢q. The idea is to replace
the role of Ly in the above scheme by S; = S(®;), that is, let £; := Q%5LQ,
and denote by A, the Galerkin projection obtained by replacing £ in (7.36)
by L J-
The next step is to approximate E;l in the neighbourhood of each wavelet
on high scales by P, defined by

Pqug = Z <g7¢/\>T/\a

g<A<J

where the 7, are here defined by
—v(NQ502Quma =Pa, 1A >g,

As above, A4 + Pj, approximates [Zjl on Sj. One can now formulate an
analogue to Theorem 7.6, setting Uy, =7 — Ly(Ajq + Pgq), so that

L3' = (Asq+Prg) Y Uy,
1>0

Thus the solution of Lu = f in S is given by
uy =Y fr, (7.42)

E>1
where

fo =T —(Asq+Prg)L)fr—1, k>1,

and fi := (Ajq + Pjq)f. An approximate solution in S; is obtained by
truncating the series (7.42).
Note that, in view of (5.16), A4 is defined by

Q;(QjﬁQJ)QqAJ,q = Q;ﬁQqAJ,q = I,

so that the application of A, requires solving the (small) linear system in
Sq C S;. However, the discretization of £ that involves inner products with
non-constant coefficients has to have the accuracy of the highest discretiz-
ation level J in order not to spoil the overall accuracy. The application of
Pjq again requires a sufficiently accurate evaluation of the vaguelettes 7.
Here the remarks of the preceding discussion apply. Again, in the periodic
setting wavelets with global support are usually admitted at the expense
of an additional log term introduced by FFT. Employing compactly sup-
ported wavelets and approximating the vaguelettes as indicated before, one
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may still hope to keep the computational work proportional to dim S;. Of
course, the practical realization involves several approximation and trunca-
tion steps depending on the choice of J, ¢ and ¥, ¥, and these have to be
carefully balanced. One has to keep in mind that the general philosophy is
to spend quite some effort on initialization and precomputation in order to
reduce the solution to rapid evaluation schemes. It should be interesting to
compare the scheme with conventional preconditioning schemes. Numerical
tests for a periodic model problem show rapid convergence of the scheme
(Lazaar et al. 1994). Details of the numerical schemes, their analysis and
numerical experiments are presented in Lazaar (1995).

7.6. Energy pre-wavelets

One drawback of the above vaguelette schemes is that even when biortho-
gonal pairs ¥, ¥ of compactly supported wavelets are used, the collections
O generally involve globally supported functions. This can be remedied in
certain cases at the expense of exact diagonalization. In fact, consider again
a constant coefficient elliptic operator £ = 3", g/<s aagaaaﬁ with strictly
positive symbol o. Suppose that ¢ € Ly(R™), n < 3, is a stable generator
(see (4.9)), which is smooth enough to satisfy

2

> | (#) oy + 4nk) ~ 1, (7.43)
kezr
—2
and [ ( Y oz — k)]) dz < oco. Moreover, assume that ¢ is skew-
0,1 \kezr

symmetric about some point a € R", that is, ¢(a + z) = ¢(a—z), =z
R™. It was shown by Dahlke and Weinreich (1994) (see also Dahlke (1996
and Dahlke and Weinreich (1993)) that there exist ¢, € S(®1), e € E,
{0,1}™\ {0}, such that

S(®1) = S(@0) ® S({we(- — k) : k€ 2" e € E*}),

m

~—

and
(LD, V) =0, e€kE,. (7.44)

Thus the 1. generate complement spaces that are orthogonal relative to
the energy inner product a(u,v) = (Lu,v) (when L is symmetric, recall
Section 1.4). One should note that this also covers genuinely multivariate
generators ¢ not obtained by tensor products of univariate ones. The re-
striction to spatial dimensions n < 3 arises from the fact that in these cases
the masks for the wavelets can be retrieved from the mask of the generators
in an explicit way, which plays a central role in the construction.



152 W. DAHMEN

The above result (7.44) concerns the decomposition for one level. Due
to the appearance of the symbol o, the adapted wavelets are (as in the
vaguelette case) scale-dependent. To obtain a complete wavelet basis, one
has to demand that (7.43) holds for all symbols o} := 0(27-). Let {t)je}ecE.
be the wavelet family constructed above relative to 0. Then {¢(- —k) : k €
ZPYU{;e(2 - —k): k€ Z" e € Ei, j =0,1,2,...} forms a wavelet basis
satisfying

(Lje(- = k)b e(-—K)) =0, ee €E kK ez, j#j, (745)

(Dahlke and Weinreich 1994, Dahlke 1996).

Returning to the periodic case, the stiffness matrices relative to this basis
is therefore block-diagonal. In particular, the case L = —A +a, a > 0 is
covered. In this case the wavelets can be chosen to have compact support.
Therefore the diagonal blocks are sparse. Properly scaled, each block is well
conditioned. Thus such matrices are easily inverted, which suggests using
them for preconditioning purposes, when £ has a more complicated form.

7.7. Bwolution equations

The next step is to consider problems of the form (2.14) described in Sec-
tion 2.2. A common approach to such problems is to fix a time discretization
that is ¢mplicit in the leading second-order term Lu and explicit in G(u).
The simplest example is the Euler scheme

W0+ _ O
At

where the upper index [ denotes the time level, that is, u(!) is an approxim-
ation to u(-,t;), t; = tj—1 + At. Thus for each time step one has to solve an
elliptic problem

+ LY 4 @) =0, (7.46)

(I + AtL)uH) = 4 — AtG(uW), (7.47)

of the form discussed in previous sections. Of course, any elliptic solver such
as the robust FE-based wavelet preconditioners discussed in Section 6 can
be used for that purpose too. Once space discretizations £;, G; for £ and G
relative to the spaces S(®;) =: S;, say, have been chosen, one has to solve
linear problems

In particular, when G = 0 one formally obtains

uf™ = (1 + Aty 0. (7.48)

Note that the projection scheme from the previous section, with respect to
orthonormal wavelet bases, gives rise to a conceptually somewhat different
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scheme of the form

u{* = (@I + AtL)™H, (7.49)

where one can use the fact that
(Qi(I+ AtL)™) = (Q;(I + AtL) Q) QI+ AtL)™Y).  (7.50)

Liandrat and Tchamitchian (1997) have pointed out that there exists no
discretization £; of £, independent of At, such that (I +AtL;)~! = Q;(I+
Atﬁ)_lQJ’.

An algorithm based on (7.49) is proposed and analysed in Liandrat and
Tchamitchian (1997). This time-dependent vaguelette scheme looks schem-
atically as follows.

ALGORITHM 3 (TIME-DEPENDENT V-SCHEME)

(1) Choice of ¥, ¥, At.
(2) Initialization:

e When globally supported wavelets are used, fix truncated versions
of the filter matrices Mo, M;; from (3.4), (3.8).
e Approximate the filters

F,:= (9, (I + AtL)71D,).
(3) Compute the scalar products
(W — Atg ), 65)

according to (7.23) (or the hybrid evaluation scheme in Section 7.4).

(4) The representation of ugl) in terms of ®; is obtained with the aid
of (3.26).

To ensure that this scheme is competitive with finite element schemes,

an efficient evaluation of the nonlinear terms G (ug-l)) is needed. This is a
nontrivial task when working in the wavelet representation. Some proposals
on how to deal with this task can be found in Liandrat and Tchamitchian

(1997). We will address this issue again later.

Wavelet representation of evolution operators

We will now briefly describe an alternative approach pursued by a number of
researchers; see, for example, Beylkin and Keiser (1997), Dorobantu (1995),
Enquist, Osher and Zhong (1994) and Perrier (1996). The order of time and
space discretization is now reversed. The basic ideas will be explained again
for the model case of univariate evolution equations on [0, 1] with periodic
boundary conditions of the form

Ou

i Lu+G(u), ul(ty) =ug, ulzx,t)=ulz+1,1t), (7.51)
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where, as before, G is a possibly nonlinear operator and £ is a constant
coefficient second-order operator Lu = 1/5%22, v > 0. Again the examples
(2.15) and (2.16) are covered.
A key role is played by the classical semi-group approach. In fact, by
Duhamel’s principle the solution u(z,t) to (7.51) is given by
t
u(z,t) = ey (z) + /e(t_T)ﬁg(u(x, 7)) dr. (7.52)
to

In particular, for the heat equation where ¢ = 0 and v = 1, the solution
operator £ has the form

(e v)(z) = lmm/e(zzty)zv(y) dy. (7.53)

V2t

The reason why the use of this representation has been mainly confined
to theoretical purposes is that conventional discretizations of the involved
operators are not sparse. The main thrust of the above mentioned papers
is that this is different when employing wavelet-based discretizations (recall
Section 1.5 (c)).

An example of this type is the following proposal from Enquist et al. (1994)
concerning long time solutions. It begins with a conventional discretization
by the method of lines
iU =L;U+F (7.54)
dt
of %—‘t‘ = Lu + f, where U = (Uk(t) ~ w(k27, )2t F o= (Fi(t)i)
Fy(t) = f(k277,t) and

(L;U) = 122 (Up_1(t) — 2Uk(t) + Upsa(2))

is the classical second divided difference operator. Now Duhamel’s principle
applied to (7.54) yields

t+AL
U(t + At) = 25U (8) + / e(tHHA=9)L R (5) ds. (7.55)
t
Conventional numerical schemes are now obtained by expanding the evolu-
tion operator eAt£i. For instance, Taylor expansion and truncation yields
explicit schemes with the usual stability constraints on the time step At

relative to spatial mesh size Az = 277 in the present case. Any such ap-
proximation £ to e2t£i provides

U(nAt) x Ut =£"U%+ > €™ 'F (7.56)

i=1
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as a discrete counterpart of (7.55). The simplest examples are £ = (I +
AtL;) or € = (I — AtL;)™! for the explicit and implicit Euler schemes,
respectively. Alternatively, & = (I — §:.£;)"}(I 4+ §LL;) corresponds to the
Crank-Nicholson scheme.

Now, suppose one is interested in long time solutions of the heat equation.
This requires high powers of £. In particular, the powers £ 2" can be obtained
by repeated squaring. Setting Sy, := €2, Cp = Z?:o_l E'F, and noting
that

2m_1
No& = I+E+EIH+E+ET+E+E +E)+ -
i=0

+ETT I+ E+ -+ ETTTY, (7.57)

the following algorithm approximates the solution at time ¢ = 2™At after
m steps.

ALGORITHM 4
Set S :=&,Cy =F.

(1) Fori=1,2,...,m:

Si = Si2—17
Ci = (I+8i-1)Ci—a1.

(2) Then U®™ = §,,U® 4 ¢, is the approximate solution of (7.54) at
time 2™A¢.

The conceptual advantage is that time is rapidly advanced by a few applic-
ations of powers of £. However, in this form Algorithm 4 cannot be applied
in practice since the corresponding matrices fill up after a few squarings, so
that each step becomes too costly. The basic idea of Enquist et al. (1994) is
to transform Algorithm 4 in such a way that the S; become sparse (within
some tolerance). One exploits the fact that wavelet representations of CZO
(and their powers) are nearly sparse (recall Section 7.2). Similar ideas are
used by Perrier (1996). Consider again the 1-periodic case and a corres-
ponding dual pair of periodized generator bases ®;, ®;. Let N = 27, Each
c € RY can then be indentified with ¢T®; € S(®;) and the transform Tj_1
defined by (3.28) transforms c into the corresponding wavelet coefficient vec-
tord = Tj_lc. If ®; consists of pairwise orthogonal functions, for instance

periodized Daubechies scaling functions, so that ®; = éj, the transforma-
tion T; is orthogonal and Tj_1 = T;r. Hence the application of S? in wavelet
representation becomes

TTS}c = TTS8/T;d = (T7S,T;)d.

Replacing Sy in Algorithm 4 by T}gTj produces an equivalent scheme.
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The gain lies in the fact that the iterates S; now become sparse (cf. (7.11),
(6.24)). To increase the efficiency of the above scheme, one can introduce
the operation trunc(S;, €), which sets all entries to zero whose absolute value
stays below the threshold £ > 0. This leads to the following.

ALGORITHM 5
Set S, = trunc(T;rETj, €) and Cy = T;rF.

(1) Fori=1,2,...,m:

S; = trunc(S2 ,,¢),
C; = (I+8-1)Cia,

U =TS, TTUO 1 Cp).

Of course, the threshold ¢ has to be chosen appropriately. Also, modi-
fications and additional assumptions are necessary when f depends on t
explicitly. The error analysis carried out by Dorobantu (1995) indicates
that € < At is a reasonable choice. Although an explicit scheme constrains
At relative to Az = 277, the experiments in Dorobantu (1995) suggest that
a simple explicit Euler scheme & = (I + AtL;) is in this context superior to
an implicit scheme, although the solution of corresponding systems benefits
from the preconditioning effects of the wavelet bases. One should also note
that the choice of the wavelet basis is not necessarily related to the space
discretization, which above was just finite differences. On one hand, this in-
creases flexibility and reminds us of algebraic multigrid. On the other hand,
the scope for rigorous analysis of the scheme certainly decreases.

The non-standard form

The key idea of the above scheme is that, as soon as sparse representations
of evolution operators are available, discretizations of the integral repres-
entation (7.52) reduce to matrix-vector multiplications with (nearly) sparse
matrices. Therefore, the efficiency of this operation is crucial (just as in
the context of iterative solvers). So far, we have primarily exploited the
(near) sparseness of the matrices (7¥, ¥)T, which are often referred to as
the standard form of the operator 7. In particular, in the context of peri-
odic problems the following alternate representation has been propagated
by several researches. It is called non-standard (NS) form; see, for ex-
ample, Beylkin, Coifman and Rokhlin (1991), Beylkin and Keiser (1997)
and Dorobantu (1995). While (7¥, ¥)T arises from the formal expansion
(see (5.37))

o0

T=%T% =) (@ - Q)T (Q— Q1) (7.58)

J1=0
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setting (J_1 = 0, the alternative telescoping expansion gives
T = i(@;ﬂmﬁl ~QiTQ;) + QT Qo,
j=
where as before Q; f = (f,®;)®; = (f, 0)®o + Si_L(f, ¥;)¥;. One readily
checks that
7= 3 (@1 Q)T(Q- Q) + Q) T(@pa= Q)+ (@h= ©)TQ))
j=

+ Q7 Qo. (7.59)

Of course, one can start the expansion at any other fixed coarsest level jg
instead of jo = 0. Another way of looking at the NS form is to expand the
kernel of T relative to the dilates and translates of the bivariate wavelets

V(@)Y(y), @)v(y), Y(x)o(y).

Since
Qi1 — QNT(Qjr1 — Qj)v = (v, U;)(TT;, U;)¥y,
(@1~ Q)TQv = (v, 9;)(T9;, ¥

the matrix representations of the block operators are

Aj = (T9;,05) = M (T, ®551)My,
B; = (T®;,¥;) = MI(T®;1,9;11)M;1, (7.60)
Cj = <T\I/j,(1)j> = M}:1<T¢j+1,q)j+1>Mj70’

and Hy := (7 ®g, ®¢) for the coarse level contribution. Thus these blocks
involve the three types of scalar products

oy = (T, bia)s Bl = (Thiwit), vy = Tik dis),  (7.61)

which, in contrast to the standard form, involve only functions on the same
level j in each block.

As a consequence, several practical advantages can be attributed to the
NS form. In contrast to the standard form, the NS form maintains the
convolution structure of an operator. Thus FFT can be used to enhance
further the efficiency of matrix vector multiplication in NS form. Moreover,
since the scalar products only involve functions on the same level, the meth-
ods described in Section 4.2 can be used to calculate them efficiently. Only
finitely different coefficients are needed to represent a constant coefficient
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Fig. 3. Schematic view of the NS form

differential operator in NS form. For an extensive discussion of the rep-
resentation of operators in wavelet bases, the reader is referred to Beylkin
(1992). However, one has to stress that one consequence of uncoupling levels
in the NS form is that the vectors it applies to are not representations of the
original vector with respect to any basis. Instead they could be viewed as
coefficient vectors relative to a redundant spanning set. Accordingly the size
of the NS form is up to almost twice the size of the corresponding standard
form; see, for example, Beylkin (1992) and Beylkin and Keiser (1997).

More precisely, the action of the truncated operator 77 := Q%57 Q; can
be described as

J-1
Tw = Tow+ Y {©T)AE; + (v, 8)B;¥; + (v, 9;)C;8; }
j=
J-1 . -
= Y {dT¥; +&Td;), (7.62)
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where
df = (v, 9,)A;+ (v,®;)B;, j=0,...,J -1,
&F = (v, ¥)Cy, j=1,...,J-1, (7.63)
& = (v, B)(T®o, ®o) + (v, ¥o)Bo.

Thus the application of 77 in the NS form requires, in addition to the wavelet
coefficients (v, ¥;) of v in S(¥;), the scaling function coefficients (v, ®; i)
on level j. Hence when v € S(®,) is given in single-scale representation
v = (v, <I)J><I>J, the array dNS = (co,do, & 1,dy_ 1) representing the
application of 7; to v is obtamed according to (7.63), by applying the blocks
A;,B;,C; to the result of the pyramid scheme (3.28) for the corresponding
level.

Conversely, to transform the output &I}IS back into a coefficient vector
relative to a basis of S(®;), one can proceed as follows. Since by (3.4),
(38),

cTHh. — eTMT. & dT¥. — ATMT. &
Cj q)] —Cj Mj’()@]—(v—l? d.7 ‘I’J _d] Mj,l(I)J+1’

the pyramid scheme

€ - & - & - - > &1 — &y (7.64)
dg,¢;  di, &2  dg,¢3 -+  dyj_1,€5 R
where

Co := €y, éj = Mj—l Oéj-l +Mj_.1 1d;_1 +éj, i=1,...,J,
J

sumlarly to (3.26) produces, in view of (7.62), the single-scale representation
Tiv==¢ J<I> J- Likewise, in view of

&T®; = T (M;_109; 1+ M;_1,%;1),
(recall (3.13))
&-1,dj2 — &2,dj3 — &r3djy — - — &
d; N odyoe N dyos N N do
where
& =& + Mj&jz1, dji=d; + M 841, j=J-2,...,0,
generates the wavelet representation

Tv=¢&l® +di¥o+... +d} ¥y o +dT_ T 1. (7.66)

Computation of the blocks Aj;,B;j, C;
When 7 is a convolution operator one only has to determine the filter coef-
ficients ar{ B8] ,7] Moreover, in view of (7.60), it suffices to determine the
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coefficients of (7®;,®;) and then apply portions of the pyramid schemes
(3.26). When 7 is a homogeneous operator of order p such as (%)p this is

not even necessary, and one puts
(T®;,8;) =27 U=7(Td;, ;). (7.67)

Specifically, when 7 = (%)p, the coefficients in (7®;, ®;) form finite dif-

ference approximations of 7 in S(<i> s) of order d + J~— 1, when d,d are
the respective orders of exactness of the ®;,®; and d > d. In fact, let
Oj == 277(k +[0,1]) and v € C*°(R). Hence there exists a polynomial P
of degree d — 1 and a smooth remainder R so that

vlg,, =P+ 2_de)|Dj,k-
Thus
QTQv—Tv = QTP+27Q;TR—TP—277TR
= (@ -NTP+274Q; - I)TR.

Since for 7 = (%)p, T P is a polynomial of degree at most d—1—p < d, the
first summand on the right-hand side vanishes. Moreover, locally (Q; -NTR

behaves for smooth R in a neighbourhood of 0; ;. like 2=% in the Loo-norm,
say (see Proposition 5.1).

Moment conditions of the B-blocks

By (7.62), the blocks A; and C; are multiplied by vectors that contain
wavelet coefficients. Since possibly only a few of these coefficients exceed
a given threshold, one expects that these multiplications can be carried
out efficiently within a desired accuracy. Instead, the vectors multiplying
the blocks B; consist of scaling function coeflicients representing averages.
Therefore these arrays are generally dense. However, it is important to note
that the matrices B; = (7 ®;, ¥;) have vanishing moments when

T=H or’T:f(%), (7.68)

where H is the Hilbert transform (see Section 1.3) and f is analytic. More
precisely, for any p := (P(l));cz, P a polynomial of degree < d —1, one has

p™B; =0 (7.69)

for any 7 from (7.68); see Beylkin and Keiser (1997). In fact, by (7.60), one
has

p'B; = (TpT®;,¥;). (7.70)
By (4.30), pT®;, is a polynomial of degree d — 1. Expanding f (%) in powers
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of %, it is clear that f (%)pnbj is a polynomial of degree < d — 1. Since,
by assumption d > d, (7.69) follows in this case from (4.33). When 7 = 'H
an argument similar to the one used in Section 1.3 also confirms (7.69); see
Beylkin and Keiser (1997).

Some theoretical remarks
Due to the appearance of at least one wavelet in the scalar products (7.61)
there is still a compression effect. In fact, if the kernel K of 7 satisfies

7T T

K < (1) .
s K@)+ | 5K @) £ oy (771)
for z # ymod 1, one can show that (Tchamitchian 1996)

lodi| + (82 + 1| < k—ar, (7.72)

provided that the corresponding functions with indices k and [ have disjoint
supports. For the remaining cases the additional assumption

o[+ |8+ £ 1 kLiez (7.73)

is needed, which is called the weak boundedness property. This condition is
weaker than Lo-boundedness of the operator. It plays an important role in
the following celebrated theorem due to G. David and J. L. Journé; see, for
instance, Tchamitchian (1996).

Theorem 7.7 Suppose that the kernel of 7 satisfies (7.9), (7.10). Then
T is continuous on Ly if and only if it has the weak boundedness prop-
erty (7.73), 7(1) € BMO and 7*(1) € BMO.

7.8. A pseudo-wavelet approach

The previous section contains major ingredients of an approach to solving
periodic nonlinear equations of the form (7.51) proposed by Beylkin and
Keiser (1997). There it is termed the pseudo-wavelet approach. It is a
systematic attempt to compute an approximate solution to (7.51) at the
expense of a number of arithmetic operations proportional to the number
of wavelet coefficients required for representing the approximate solution to
the desired accuracy. The central idea is to employ appropriate discretiza-
tions of (7.52) which ultimately reduce to the adaptive application of certain
operators in the NS form to corresponding coefficient vectors.

One basic tool is a class of time discretization schemes presented by
Beylkin, Keiser and Vozovoi (1996). For instance, in the case of Burgers’
equation (2.16) the term

¢
I(t,tp) := /e(t_T)Eu(-,'r)—(%u(-,T) dr (7.74)
to
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is approximated by
I(t+ At,t) (7.75)

= %(9571 <u(, to)%u(-, t+At) +u(,t+ At)a%u(-, t)) + O((At)?),

where

Opm i= (™A —T) L7, (7.76)

So the idea is to discretize G(u(-, 7)) in the time variable 7 so that the ezract
t+At
application of [ et*+A*=7)Ldr reduces to the application of Of ;. This

is essentially dif%erent from the procedure in Section 7.7 where the space
discretization was fixed before. For the derivation of higher-order schemes
and a corresponding stability analysis see Beylkin et al. (1996). Here it is
important that the operators £~! or e™** can be evaluated ezactly within
any chosen accuracy. Again in the case of Burgers’ equation one has to
evaluate

u(x,t + At) = eAu(z, t) — I(t + At, 1), (7.77)

2
where L =v (%) and O ; is given by (7.76).

In order to apply the operator functions et and O, efliciently one is

interested in computing their NS form. Therefore it is important to determ-
ine the NS form of f (a%) when f is analytic. Beylkin and Keiser (1997)
propose two approaches, namely to compute

Qrf ( ) Qs (7.78)

( aﬂ ) (7.79)
aﬁ

via (7.79) one can diagonalize 2 55 With

or

fle
To compute the NS form of f (

the aid of the discrete Fourier transform and apply the spectral theorem
(Beylkin and Keiser 1997).
Using (7.78), according to the discussion in the previous section (see

(7.60)), one can first determine the arrays ¢ := (f (%) ®;,®;), consist-
ing of the coefficients

. . . 8 . .
=¥ [ 620~ 0)f (5 ) #(2a — K)dz = €Ly
R
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Using Fourier transforms, one can show that (Beylkin and Keiser 1997)

21
¢ = / g;(6)ee de, (7.80)
0

where

9;(6) = Y F(—i27 (¢ + 2mk))|(€ + 27k) 2,

kez

and exploit the fact that |$(€)|? acts like a cut-off function. Thus g;(€) can
be approximated arbitrarily well by a finite sum §;(£) which can be used to
discretize (7.80). Recall the similar reasoning in the vaguelette approach.

Adaptive application of operators in NS form
According to (7.63), the application of an operator in NS form requires
evaluating

A’ = (v, ¥;)A; + (v, ®)B;, € = (v,¥;)C;.
To accomplish the goal of realizing an overall solution complexity, which
is proportional to the number of significant wavelet coefficients of the solu-
tion relative to a given accuracy, each calculation of 7jv has to be realized
within this order of complexity. A heuristic reasoning towards this goal can
be summarized as follows. The solution to the differential equations under
consideration are typically smooth except at isolated locations where singu-
larities such as shocks can build up. Consequently, many wavelet coefficients
of the solution can be expected to stay below a given threshold. Hence the
arrays (v, \ilj) are typically short. However, the arrays (v, ®;) consist of
averages and may be dense in spite of the smoothness of v. At this point
the vanishing moment property of the B-blocks established in the previous
section is crucial. Exploiting this property, Beylkin and Keiser (1997) argue
that, when a smooth vector is applied to Bj, the result will be sparse. In
fact, Beylkin and Keiser (1997) indicate how to use the wavelet coefficients
of v to replace the dense array (v, <i>j) by a sparse vector s/ so as to realize an
efficient application of the B; block within a desired tolerance of accuracy.
For a more detailed discussion of the components of such a scheme we refer
to Beylkin and Keiser (1997) and the literature cited there.

In addition, some interesting numerical experiments are discussed by
Beylkin and Keiser (1997). First a classical Crank-Nicholson scheme for
the heat equation % = V%u is compared to the wavelet-based scheme,
which consists in this case of a repeated application of the NS form of et
via

u( tie1) = eALul- 1),  ul:,to) = uo.

This is an explicit procedure, yet unconditionally stable, once the evalu-
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ation of eAt£ is accurate enough to cope with the higher-order oscillations
introduced by the nonlinear terms. In particular, the advantage of higher-
order schemes is stressed. In fact, due to the higher number of vanishing
moments, they result in better sparseness of the NS form of the operators.
Subsequently, the scheme is tested on several versions of Burgers’ equation
and its generalizations. These experiments apparently confirm that the num-
ber of operations needed to update the solution in each time step remains
proportional to the number of significant wavelet coefficients.

7.9. Wavelet packets and best bases

There is yet another technique for discretizing evolution equations of the
form (2.14), which has been proposed by Joly, Maday and Perrier (1997),
for instance. It aims at realizing best possible compression of the approx-
imate solution by employing the concept of wavelet packets and best bases
developed by Coifman, Meyer, Quake and Wickerhauser (1993) and Coif-
man, Meyer and Wickerhauser (1992). This technique is also used by Farge,
Goirand, Meyer, Pascal and Wickerhauser (1992). Therefore we will briefly
indicate some of the ideas in Joly et al. (1997), where further details and
relevant references can be found.

To describe the concept of wavelet packets, we confine the discussion to
scaling functions ¢ € L(R), whose translates ¢(- — k), k € Z, are orthonor-
mal, that is, ¢ = ¢. Let us denote by a, b the masks of ¢ and the wavelet
W, that is, by = (=1)*a;_, k € Z (see (4.20)). One can use these masks to
recursively generate further basis functions, defined with ¥y = ¢, ¥, = ¥,
forn > 1 by

Yon(x) =D ap¥n(2z — k),  tont1(z) = Y bthn(2z — k). (7.81)
kEZ k€Z

One can then show that
S5(®;) = 5({%(' —k):0<n<2? ke Z}),

so that a variety of orthonormal bases are available. Let £;, respectively
&, denote any subset of N x (Z N (—o0, J]), respectively N x Z. With each
(n,j) € N x Z associate the interval I, ; := [2/n,2/(n + 1)). Let

Vi k(@) =22 (2z — k).

Theorem 7.8 (Coifman et al. 1992) Any collection {¢, jx : (n,5,k) €
Ey X Z resp. £ x Z} is an orthonormal basis of S(® ), respectively La(R), if
and only if

i) U In;=1T0,27), resp. U In;=R"
(n.J)€Es (n.j)e€y
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(i) for all (n,7),(n, ') € &1, resp. &, one has I, ; NV Ly 3 = 0 if (n,j) #
(n', ).

It is again convenient to abbreviate A = (n,j, k) € £ x Z. For a given

problem, the point is now to select that basis which is best in a certain

sense, rather in the spirit of signal analysis. The decision is based on an
appropriate notion of entropy. For a given v € Lo(R), let

v = Z ey,

AEEXT

For D C £ and any € > 0, the quantity
HEP(v) := #{cy : |ea] > e, A € D x Z} (7.82)

is called the cardinal entropy of v. Note the difference from the following
more familiar measure for the content of information,

HP(v):=— Y l|eal’Infenl, (7.83)
AEDXZ

which is called Shannon entropy. Minimizing the cardinal entropy over D
corresponds to selecting a basis with respect to which the representation of v
has possibly few coefficients above the threshold €. The adaptation of these
notions to the periodic case is again standard. Corresponding decomposition
and reconstruction algorithms as well as the recursive determination of best
bases are described in Joly et al. (1997). A comparison between the different
notions of entropy favours the cardinal entropy for present purposes. Let us
denote by B:(v) C &£; the index set for a best basis for v relative to (7.82)
and set A.(v) := {\ = (n,5,k) : (n,j) € B:(v),k € Z/2Z}.

To make use of these concepts here, one associates with each A the centre
x) of the basis function ¥,. Moreover, one assigns to A = (n,j,k) an
influence rectangle centred at (xy,n2’) in the position—frequency diagram,
which symbolizes the time—frequency support of ¥5. Once the position of ¥y
is determined, one can define the neighbours of each 1y; see Joly et al. (1997)
for the precise definition. Given the best basis, the reduced representation
of v is given by

Qui= Y (v,¥)v, (7.84)
AeAc(v)
where
As(v) ={X € A:(v) : |[{v,¥n)| > €}. (7.85)

The central step of the adaptive procedure proposed by Joly et al. (1997)
is to add to A, (v) the neighbours of its indices, which typically results in a
set that is not much larger than Ac(v). In fact, for most elements in A.(v),
one expects that its neighbours already belong to A.(v).
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Of course, for non-stationary problems the solution will change in time.
Small variations of a function may actually cause significant changes of the
best basis. However, Joly et al. (1997) observe that the entropy does not
change much when dealing with evolution equations like Burgers’ equation.
Thus the best basis does not have to be updated after each time step.

We now outline the algorithm from Joly et al. (1997) for Burgers’ equa-
tion (2.16). We wish to approximate the solution u(mAt,-) at time mAt by
u™ =uf € S(®;) as follows.

ALGORITHM 6 (JMP)
Let u be the approximation of the initial value u° and let B(u}) denote
its best basis. Let

A% = A (uY)
be the reduced index set after thresholding.
(m + 1)st step: Given

where A™ C A(uY).

(i) Form A™ as in (7.85) and 4™ as in (7.84) (relative to A™).
(ii) Form A™%1 by adding to A™ those elements in A.(uY) that are
neighbours of elements from Am.
(iii) Determine

™t = Z ex(m + 1)y

A€A™F
by requiring that the following Galerkin conditions hold:

i m+l _ ~m 1_8_ ~m\2 >__ <£~m3 >
<At(u u )+281L' (U*) 7¢>\ = -V 8mu*’0xw>‘ 3

for A € A™*1 where @™ := 3a™ — lgm—1,
b * 2 2

We conclude with a brief discussion of the implementation.

Since the sets A™ change, the stiffness matrices needed in (7.86) change
as well. Therefore Joly et al. (1997) propose to precompute the whole stiff-
ness matrix relative to the entire (periodized) basis ®;. To generate the
possible wavelet packets, one then has to use the corresponding multiscale
transformations, providing a matrix of size 27 x J27.

Using orthonormal spline wavelets, the masks are no longer short, so that
one has to resort to FFT in the multiscale transformations. This introduces
additional log factors in the operation count. The decomposition of the
columns in the extended stiffness matrix according to the chosen best basis
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requires the order of J22/ operations. It seems that this strategy at some
stage requires computational work which is quadratic in the dimension of
the uncompressed problem size corresponding to S(®;). This may be a
serious drawback when dealing with several spatial variables.

The evaluation of nonlinear terms requires special care, which will be
discussed in the following section.

7.10. Ewaluation of nonlinear terms

A critical role in all the above developments is played by the evaluation
of nonlinear terms. It is perhaps worthwhile to comment briefly on the
principal problems arising in this context. As before, let ¥4 = {¢) : X €
A}. So far the discussion has stressed important advantages of multiscale
representations of the form up = dK\I' A, Where A selects only those wavelets
that are needed to represent a function v to some given tolerance. However,
note that at any point in the domain, wavelets from all levels appearing
in A may contribute. Thus the cost of evaluating a function in multiscale
representation at a single point could be proportional to the highest level
J appearing in A. When frequent evaluations are necessary, this could of
course significantly diminish efficiency. In contrast, evaluating a function
in single-scale representation requires only a finite number of operations
independent of the level J. On the other hand, #A could be very small
compared to dim S(®;). Thus the transformation of ua into single-scale
representation in S(®;) would produce a much larger array of coefficients
which, due to their nature of representing averages, may all be significant.
This would waste the significant reduction of complexity gained by the sparse
representation of ua in wavelet coordinates.

This problem is exacerbated when, instead of point evaluations, one has
to compute nonlinear functionals of a function u given in multiscale repres-
entation. A typical example arises in connection with the elliptic problem
(7.47). Suppose that the approximate solution u® from the previous time
step ! is given as ul) = d;"{\ll A, Where A is a possibly small lacunary subset
of V. If one uses a collocation scheme for solving (7.47), one has to evaluate
the nonlinear term G(ul)) on some grid. This requires the evaluation of u(®)
on that grid, which is the task discussed above, followed by the application
of G. If the application of G is expensive, an alternative is to approzimate
G(u®) first and then evaluate this approximation. When J is the highest
scale in A, depending on the nature of G, one expects that G(d{W¥,) can
be accurately resolved on a level J > J. But, again, if the approximation
were given in a single-scale form, its evaluation would be inexpensive, but
the representation itself would possibly involve far more coefficients than
those in the array ds. This suggests also seeking some lacunary multiscale
representation d};E AR G(d¥,) with respect to a suitable basis = (not
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necessarily equal to ¥). In fact, when (7.47) is to be solved by a Galer-
kin scheme, one would have to approximate the quantities (G(d{W,), ).
Thus, for = = U, the array (Ai;"; would readily provide these quantities.

Overall, since in many cases one expects that the somewhat higher cost
of evaluating a function in multiscale representation is by far offset by the
sparseness of the representation, the central objective can be summarized
as follows. If, for e > 0, the set A C V is needed to approximate the
solution by up = d¥ A\I/ A within a tolerance ¢, find a possibly small set A and
an approximation d’= 124 to g (dT\I! A) that is sufficiently accurate to preserve
the overall precision of the solution scheme. Moreover, when ¢ tends to zero,
so that the cardinality of A = A, increases, the ideal situation would be that
the corresponding size of A = A, stays proportzonal to #A,. uniformly in €.
Likewise, the computational work needed to determine the approximation
dKGE A, should also be of the order of #A. (perhaps times a logarithmic
term).

It seems that we are at present far from this goal, at least in the above
strict asymptotic sense. Since this is currently a subject of intense research,
the state of the art will probably change quickly in the near future. Giving
a detailed account of the various existing approaches would certainly go
beyond the scope of this paper. Nevertheless, sketching some ideas, at least,
should be worthwhile.

A typical nonlinear term arising, for instance, in (2.16) and (2.17) is ua—axu
Since products of functions can be obtained as differences of squares, it
suffices to consider f(u) = u?. The approach pursued by Beylkin and Keiser
(1997) starts with the expansion

J-1
(Qrv)* ~ (Qov)* = ((Qj+1v)2‘(QjU)2)
j=0
J—-1
= 3 (@R + (Rpv)?),  (787)
j=0

where we abbreviate R; := Q11 — Q.
In fact, within a given tolerance, one has v = @ yv for J sufficiently large.
This gives

J-1
v? = (Qov)? + Z (2(ij)(ij) + (ij)2> . (7.88)
7=0

The evaluation of (Qgv)? is inexpensive. The problem is that products in
the summation will generally not belong to the same space as the factors.
Since products correspond to convolutions in the Fourier domain, one can
estimate the extent to which higher oscillations are introduced. To resolve
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them accurately enough one needs a higher level of resolution. However, es-
timating the spread in the Fourier domain, one can argue that, again within
some tolerance, (Q;v)(R;v) and (R;v)? belong to S(®,j,) for some positive
jo. For any given tolerance a positive jg does indeed exist independent of j
(Beylkin and Keiser 1997). Thus, by repeated application of the refinement
matrices, one can determine the representation of Q;v and R;v in S(®;44,),
for instance,

RjU = (dj+j0)T<I)j+j0 .

If, in addition, the functions in ®; were interpolatory, that is, ¢(- —k) = bo,
the assumption v, f(v) € S(®;) would give

F) = fler)d(-—k), v=73 (- —k). (7.89)
k k

In this case one would have (Rjv) = ((di+0)2)T &, ;. where the square is
to be understood componentwise. Thus the coefficients ¢/77 (v?) in S(®;,,)
are computed (approximately) as

oI+ (u?) = 2(IH0(Qu)) (@I (Ryv)) + (d°(R0))2. (7.90)

The justification for taking componentwise products of the coefficient se-
quences assumes the use of scaling functions whose shifts are orthogonal
and which are almost interpolatory in the sense of (4.17). Recall that this is
the case when the scaling function has sufficiently many vanishing moments
(4.16); see Beylkin et al. (1991).

Note that at least one factor in each product on the right-hand side of
(7.90) involves wavelet coefficients. These arrays are usually sparse, so that
only significant products need be calculated. Accordingly, one should only
compute those scaling function coefficients in ¢/790(Q;v) affected by large
wavelet coefficients. This requires suitably localized multiscale transform-
ations. Depending on the context, the resulting (local) single-scale arrays
c/*J0(v?) can be used for point evaluations, or have to be transformed into
wavelet representations. Therefore, the development of appropriate data
structures is certainly an important issue.

A promising alternative is offered by an adaptation of Algorithm 2 from
Section 7.4, by which an interpolating approximation is transformed into a
wavelet representation. A different strategy is pursued in Joly et al. (1997);
see also related work in Danchin (1997), Maday, Perrier and Ravel (1991).
Joly et al. (1997) propose interpolating the reduced approximation @™ at all
the points ) corresponding to the entire basis. The values at these points
are computed through a fast evaluation scheme (setting those coefficients to
zero whose indices do not belong to A™: see the algorithm in the previous
section). The values of (@™)? are then computed at each point and (4™)?
is interpolated with respect to the best basis. The overall cost is O(J27),
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which unfortunately exceeds the number of significant coefficients in A™. If
the best bases need not be changed, the collocation can be based on the
centres ), A € A™*! (Danchin 1997).

7.11. Stokes and Navier-Stokes equations

Of course, the above evolution equations can be viewed as simplified test
cases for the next higher mathematical model, namely the Navier—-Stokes
equations for incompressible fluids, which, properly normalized, read

ou
o ~vAut(w VutVp = f, (7.91)

V-u = 0

see, for example, Girault and Raviart (1986). Here u : R® x Rt — R"
represents the velocity of the fluid, and p : R x Rt — R the pressure, and
v is a positive number called the kinematic viscosity. So when v gets small
the formally parabolic first system becomes hyperbolic. One usually looks
for (u, p) satisfying (7.91) in some domain {2 subject to initial and boundary
conditions

u(-,0) =uy inQ, wu=0ondadN x[0,T], (7.92)
and

/ p(z,t)dz =0, te€(0,T), (7.93)
Q

since p is only determined up to a constant. In this section we outline some
recent attempts that tackle the numerical solution of this kind of problem
by means of wavelet discretizations.

Amongst the difficulties in treating (7.91) numerically is the constraint
V -u = 0. One way to avoid this is to write (7.91) in the so-called vorticity
stream function formulation

% +u-Vw—vAw = 0, (7.94)

Vxu = w,

which is valid in this form for n = 2; see, for example, Quartapelle (1993).

For 2 = R%/Z? and periodic boundary conditions, Algorithm 2 (see Sec-
tion 7.4) is applied to (7.94) by Frohlich and Schneider (1996). Wavelet
schemes based on the methodologies described in Section 7.7 are applied
to (7.94), among other model problems, in Charton and Perrier (1996), ac-
companied by a complexity analysis which indicates that the complexity
of the scheme is proportional to the dimension of the highest resolution.
Although working with possibly highly lacunary sets A of wavelet indices,
one has to employ at some stage the transformation between single and
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multiscale representation. So part of the principal efficiency is diminished
again by this typical bottleneck. On the other hand, if this is the only place
where the complexity of the full spaces enters, the constants appearing in
the complexity estimates can be expected to be moderate.

To become competitive with the existing numerical methods, it is concep-
tually important to overcome the restriction to the vorticity stream function
formulation, which is convenient only in the two-dimensional case. When
working with the primitive variables u, p in (7.91), it is known that the con-
straint V-u = 0 imposes certain compatibility conditions on the trial spaces
for velocity and pressure that are necessary for an asymptotically stable
solution procedure Suitable families of such finite element spaces are known
(Girault and Raviart 1986). However, for n = 3, they become quite involved
when trying to raise the order of exactness. We will therefore briefly dis-
cuss what potential contributions of wavelet concepts in this regard can be
expected.

Saddle point formulation
Suppose we fix trial spaces V}, C (H(Q))" and

My C Lao(Q) = {g € La(Q) : /g(x) dz = 0).
Q

A semi-implicit discretization of (7.91) in conjunction with a weak formula-
tion of the corresponding linear problem yields

(up ™, vn) + Atw(Vut ™, Vop) + (o, V) = (f — ' - Vup', o), vn € Vi,

(divul™ ) = 0,  pn € M. (7.95)

One may question for which time steps and under which circumstances it is
reasonable to use an explicit discretization of the transport term uj® - Vuj*
and put it on the right-hand side. But for the time being we ignore this
point and remark that (7.95) corresponds to the linear system of equations

Ah,a BE ) up _ Fh

( B o (m) = ( N ) (7.96)
Here A}, 4 is the stiffness matrix of the operator £L = I — aA, a = Atv, and
BE is the discretization of the gradient V relative to the chosen bases in
Vi, Mp,. Recall from Section 2.2 (b) that the stationary Stokes problem (2.7)
leads to an analogous system where Ay , is replaced by the discretization

of £ = vA. Both share the same operator By, however.
To ensure that the discretizations are stable, that is, that the inverses of

the discretized operators £}, are uniformly bounded, the pairs (V4, M}) have
to satisfy the Ladysenskaya—Babuska—Brezzi condition (LBB), which means
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that the inf-sup condition (2.13) holds uniformly in h

inf sup b(vh, /J‘h)

e T A P oy Py (7.97)

where as before b(v, u) = (div v, u). The following well-known fact charac-
terizes the validity of (7.97); see Fortin (1977).

Proposition 7.9 Suppose (2.13) holds for the pairs (V, M) and some § >
0. Then the subspaces Vj,, M}, satisfy (7.97) uniformly in A, if and only if
there exist linear operators Qp : V — V}, satisfying

Qnvllv S llvllv, wveV, (7.98)

and
blv—Qpu,up) =0, veEV, pup€ M, (7.99)

While in the finite element context this observation is primarily of the-
oretical use, it does offer a constructive angle in the wavelet setting. We
briefly sketch the approach of Dahmen et al. (1996¢). In fact, (7.99) may
be viewed as a biorthogonality condition with respect to b(-,-). Again this
is most conveniently explained first for the case 2 = R".

To describe this consider any dual pair of biorthogonal compactly sup-
ported generators ¢, ¢ € Lo(R™) (see (4.19)). Assuming that ¢ € H!*¢(R),
the procedure mentioned in Section 4.2 (see (4.34)) yields another dual pair
(¢~,¢") of biorthogonal compactly supported generators. More generally,
let us set

Yg =T, wr=vT, A =6t O =gt
and likewise ¥, ¢, i = 0,1. Here ¢, ¢ are the corresponding compactly
supported new biorthogonal mother wavelets, which, by (4.36), arise from ¢
and 1 essentially by differentiation and integration, respectively. The trial
spaces on R™ are again obtained by taking tensor products. In particular,
the multivariate scaling functions and mother wavelets ¥ (z), 3! (z) are
obtained for e € £ = {0,1}", i = 1,...,n, by replacing in (4.38) the ith
factor by 1, (mz),gﬁz (z;), respectively. Specifically, we set ¢=' =: 9",

Fri = g
Now let
Vi={veV:ivueS@"),i=1,...n} (7.100)
and
M; := 5(®;). (7.101)

Thus we can also write

Vi=8(8y), ®lg=8"x o x ", (7.102)
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and the pairs $I®, <I>;® are biorthogonal, where <I>j_’® is defined analogously.
Hence

Qjv = (v, 87 5)®7 ¢ (7.103)
are projectors from V onto V;. Since

o

v-Qu= Y (Qu1—Q)v (7.104)

I=j+1
and
(Qui — Qu)v), = (w3, O )T,
we conclude from (4.36) that
0
ox;

But since biorthogonality of ¥ and ¥ ensures that (®5, ;) =0,1> 7, one
immediately infers from (7.101), (7.104) and (7.105) that

(div (v — Qjv),i;) =0, forall p; € M; = S(P;). (7.106)

(Que1 — Qu)v); = —4{vs, ‘I’l_’i)\i’l- (7.105)

Moreover, for ¢~S € H'¢ Theorem 5.8 implies that the Q; are uniformly
bounded on V. Thus Proposition 7.9 applies and confirms that the spaces
Vj, M; defined by (7.100) and (7.101) do satisfy the LBB condition (7.97).

There is no difficulty in adapting this construction to the periodic case.
It is perhaps more interesting to note that it can also be extended to
Q = 0 = (0,1)" and homogeneous boundary conditions (7.92). This is
done in Dahmen et al. (1996¢) by starting with a dual pair ¢, ¢ as above
and constructing biorthogonal refinable bases ®;, ®; adapted to [0, 1] as in-
dicated in Section 4.4. The key is that the modified dual pair ¢~, " again

gives rise to pairs of refinable biorthogonal bases o7, <i>;’ where, however, we

now have the inclusion S (‘i>J+) C H}(DO). Defining the collections \I/j_’i, \il;"z
in analogy to the previous construction, one can prove that one still has

9 - . 5
S ( o, \I/j) = S(T;). (7.107)
Thus the same reasoning as before shows that for analogously defined pro-
jectors Q; (7.106) is still valid. The validity of the LBB condition (7.97)
also follows in this case from Proposition 7.9.

Solving the linear systems

Since the matrix in (7.96) is indefinite, the solution of (7.96) by iterat-
ive methods requires a bit more care; see Bramble and Pasciak (1988).
The upshot of all the options is that, whenever a good preconditioner for
the (positive definite) matrix A;,, as well as for the Schur complement
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Ko = BjAj_’ClyB;r, is available, one can combine both so as to obtain a
correspondingly efficient iterative scheme for the treatment of (7.96). An
example is mentioned below in Section 8.3 in a different context. In the
case of the stationary Stokes problem, the block A, corresponds to a stiff-
ness matrix for the Laplace operator A. Asymptotically optimal precon-
ditioners for this component were discussed in Section 6. In this case the
Schur complement is an operator of order zero and hence does not require
any further preconditioning. In the time-dependent case, the roles are re-
versed: A;, is a discretization of the Helmholtz operator I —aA, which, for
small o, resembles the identity. Thus A;, is already moderately well con-
ditioned. Nevertheless, the robust wavelet-based preconditioners discussed
in Section 6.6 would here cover the full range of possible values of a. Now,
for small o the Schur complement tends more and more to a second-order
operator, so that preconditioning becomes necessary; see Bramble and Pas-
ciak (1994). Again, an asymptotically optimal preconditioner-based on the
above wavelet bases, namely Algorithm 1 in Section 6.2, is proposed by
Dahmen et al. (1996c). The concrete examples considered there are based
on dual pairs ¢, ¢ where ¢ is chosen as a B-spline (see Section 4.4). All
basis functions and wavelets for V; and M; have compact support. The con-
struction allows one to realize any desired order of exactness for any spatial
dimension. The numerical experiments in Dahmen et al. (1996¢) for the lin-
earized problem cover two- and three-dimensional examples and confirm the
predicted asymptotic optimality, that is, iteration numbers are independent
of the size of the problem.

Divergence-free wavelets

Instead of seeking pairs of trial spaces V;, M; satisfying the LBB conditions,
one could try to find trial spaces V; which satisfy the constraint div v = 0,
v € V; weakly, that is, b(v,u) = 0 for all p € M;, v € V;. This has
been realized in the finite element context but corresponding constructions
are rather involved, in particular for the 3D case. One could even go one
step further and try to construct spaces Vj0 c V0 = {v e (H}))" :
div v = 0}. Orthogonal divergence-free wavelets have been constructed
by Battle and Federbusch. These wavelets have necessarily global support
(Lemarié-Rieusset 1994) although they decay exponentially. A somewhat
different line based on Section 4.2 has been pursued by Jouini (1992) and
Lemarié-Rieusset (1992). Dispensing with orthogonality, one can construct
divergence-free biorthogonal wavelets with compact support. This point was
taken up by Urban (1995a, 1995b), where, in addition to tensor products,
genuinely multivariate divergence-free wavelets are constructed.

Using such trial spaces, the weak formulation (7.95) reduces to

Wt vy) + Atv(Vult, V) = (Fyvg), v € V), (7.108)
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that is, to a Helmholtz problem on V0. Here F collects the terms on the
right-hand side of (7.95).

First, numerical experiences for the 3D case are reported by Urban (1995c¢,
1996). These experiments concern classical Galerkin schemes. On the other
hand, the above reduction to the Helmholtz problem suggests the following
interesting alternative. Because of the constraint divu = 0, the fast vague-
lette evaluation schemes based on orthonormal wavelets have been confined
to the vorticity stream function formulation and thus to the bivariate case.
Recalling that the vaguelette approach can be extended to biorthogonal
wavelet bases, one can combine it with the above divergence-free wavelets,
which also work in the three-dimensional case.

We conclude this section with some brief remarks on the construction.
The key observation (Lemarié-Rieusset 1992, Urban 19954, Urban 1995b) is
the commutation property '

o, B i\

To make use of this fact for the construction of divergence-free wavelets, one
has to iterate the modifications from Section 4.2 by setting

¢—,(i,l) — (¢—,i)—,l,

and analogously for ¢,v and ¢. For i € {1,...,n} let N; = {1,...,n}\ {5}
and define functions z,bz,,, ve{l,...,n}, by

0, i ¢ {v,ie},
(zjjzy)i - w;er” A 7= v,
i, i =,
where i, € {1,...,n} is any index such that e; = 1. The collections

UV = (Y, € € By, v # e, j € L,k € Z™}

can then be shown to be a divergence-free wavelet basis (Urban 1995a,
1995b). Again, further analysis, implementations and numerical experiments
can be found in Urban (1995b), (1995¢) and (1996).

8. Extension to more general domains

Except for the extensions to wavelets on cubes (see Section 4.4 and the
comments in the previous section) all approaches described so far rely in an
essential way on the underlying stationary shift-invariant structure of the
discretization. It has long been known in numerical analysis that, beyond
mere asymptotic estimates, regular discretizations often support efficiency
in many ways, reflected by superconvergence effects, for instance. Therefore
it may pay in the end in many situations to exploit such advantages for
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the bulk of computation and treat boundary effects separately. The mat-
rix capacitance method is an example of such a strategy which has been
extensively studied in connection with finite difference schemes. Moreover,
when dealing with problems where the geometry changes in time, such a
concept may even be a necessity rather than an option. One possibility
that may come to mind first is to enforce essential boundary conditions by
means of penalty terms; see, for example, Glowinski, Pan, Wells and Zhou
(1996) and Glowinski, Rieder, Wells and Zhou (1993). Aside from accur-
acy issues, a conceptual difficulty with this approach seems to be that it
stiffens the problem significantly and thereby wastes previously gained ad-
vantages on the preconditioning side. A relatively simple alternative is to
refine the spaces near the boundary. Incorporating additional basis functions
on higher discretization levels whose supports are still inside the domain can
compensate the loss of accuracy encountered otherwise. From a complexity
point of view this works in the bivariate case but no longer for domains in
R3 (Jaffard 1992, Oswald 1997). Therefore we will now concentrate on three
alternative possibilities.

8.1. An extension technique

Throughout this subsection assume that L is a selfadjoint elliptic operator so
that, for a(-, -) defined by (2.5), with respect to natural boundary conditions,
the problem in variational form is to find u in H = H*(Q2) such that

a(u,v) = (f,v), veH (8.1)

for some f € H* (¢f. (6.9)). We briefly sketch some ideas from Oswald
(1997) that fit into the multilevel Schwarz concepts described in Section 6.5.

The starting point is a nested sequence of finite element or spline spaces
S;, j € Ny, defined on regular meshes of types 1 or 2 (see Section 6.6). Now
2 C R"™ is supposed to be an arbitrary bounded domain with sufficiently
regular boundary to admit the existence of extension operators E, which
are bounded in an appropriate Sobolev scale. For instance, the validity of
a uniform cone condition or Lipschitz boundaries would do (Johnen and
Scherer 1977).

The first step is to construct collections ®; o consisting mainly of functions
¢(27 - —k), k € Z", whose support does not intersect 952, where ¢ is in this
case a tensor product B-spline, say. In addition, one needs functions that are
adapted to the boundary. Their restriction to  is supported in a margin of
width ~ 277 along the boundary. They consist of fixed linear combinations
of ¢(27 - —k) designed in such a way that the span of the entire collection
®; contains all polynomials up to some degree d —1 on 2. This is similar to
the ideas presented in Section 4.4 and to the recent developments in Cohen,
Dahmen and DeVore (1995). However, in order to keep these boundary-near
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cluster functions as simple as possible, they are, in contrast to Cohen et al.
(1995), not required to be refinable. Thus one generally has

S(@;0) ¢ S(@j41.0)- (8.2)

However, along with ®;q, a biorthogonal collection Z; o is constructed in
such a way that the projectors

ij = (U,Ej@)q)j’g (8.3)

satisfy the direct estimates (5.7). Essential hypotheses are that the ¢(- — k)
are locally linearly independent (that is, the vanishing of a linear combina-
tion on any neighbourhood implies that the coefficients of the overlapping
translates ¢(- —k) are zero), as well as the availability of extension operators.

Due to the lack of nestedness (8.2), the techniques from Section 6.5 can-
not yet be applied directly. To remedy this, Oswald (1997) shows how to
construct another sequence of nested spaces S’j C HY(R) spanned by suit-
ably chosen B-splines (on all levels | < j) which overlap Q. In addition,
appropriate restriction and extension operators

Rj : Sj - S(q)jvg), Ej : S(@j’g) - Sj,
are identified. In fact, Rjv = (v, 5;0)®;0. The E; have the form

J

Ejyvy:= Z(Pj - Pj—l)'UJ € SJ:
=0

where the P; are similar quasi-interpolant type operators as the @; in (8.3)
above. In fact, Pju = (v1E;)®;, where the elements §;; € E; are either
supported in © when supp ¢(27 - —k)NQ # @, or zero otherwise. To establish
suitable norm estimates for these operators, one needs certain additional
requirements on the domain which, for instance, ensure that the margin of
boundary affected basis functions has width ~ 277 on level j. One can then
prove that (Oswald 1997)

RjEjv]- = ’Uj, ’Uj & S(q)J,Q),
and
a(R;05, Rivj) < |oilkemny, 05 € S, 54)
“Ejvj”%{t(]kn) < a(vj,vj), Vj S S((I)jyg).

~

One can then proceed as follows. Fix any H*(R")-elliptic form a(-,-) and de-
termine a preconditioner C; on S; for the operator £; defined by a(4;,9;) =
(L;0j,0;), 4,0; € S;, by the methods from Section 6.5. Then, defining



178 W. DAHMEN

and £; by (Luj,vj) = a(uj,v;), uj,v; € S(P;0), the operators C;L; satisfy
ﬁz(Cj[:j) ~1 if Hz(éjﬁj) ~ 1. (8.6)

The proof relies on the fictitious space Theorem 6.9 (Nepomnyaschikh 1990);
see Oswald (1997) for details. The treatment of essential boundary condi-
tions and further extensions are also discussed in Oswald (1997).

In this form the scheme does not make explicit use of any wavelet basis
or a corresponding exact representation of complement components. Hence
it is tailored to the selfadjoint case but otherwise very flexible in connection
with many standard discretizations.

8.2. Boundary value correction

Consider operators of the form (2.4), that is, £ = —div(A(z)V) + a(z)T.
Suppose 2 C R™ is a bounded domain. The following strategy for solving

Lu=f on®, Bulsa=yg, (8.7)

where B is some boundary value operator, has been proposed in Averbuch,
Beylkin, Coifman and Israeli (1995). Without loss of generality one may
assume that @ c O:= (0,1)".

(1) Determine a smooth extension fext and an operator Lex; of f and £
respectively, from 2 to O.
(2) Solve the problem
Eextu = fext on [ (88)

with periodic boundary conditions.

(3) Given the solution ueyy of (8.8), solve the homogeneous problem

Lu=0 on € (8.9)
subject to the boundary conditions
Bulan = g — Buext|on, (8.10)

with the aid of a boundary integral method (see Section 2.2 (d)).

Averbuch et al. (1995) only address (8.8), arguing that efficient methods
for (8.9), (8.10) are available. The rationale is that fast wavelet methods
such as those described in Section 7 do a particularly efficient job on the
bulk of the problem. In fact, in the periodic setting, the significant wavelet
coefficients are indeed determined by the significant wavelet coefficients of
the right-hand side in the following sense. Suppose that Ay is the subset of
wavelet coefficients needed to represent fexy on (0 with accuracy €. Then the
set A, ¢ of coefficients needed to represent the solution uext with accuracy
€ is contained in a certain ‘neighbourhood’ of Ay, that is, a somewhat
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larger set containing Ay, where #A, . is claimed to be proportional to
#As .. However, it is not apparent how this proportionality depends on ¢
and on the norm with respect to which accuracy is measured. Nevertheless,
according to Theorem 6.2, a diagonally preconditioned conjugate gradient
scheme constrained to the space S(¥,, ) would produce (perhaps combined
with nested iteration) an approximate solution of accuracy ¢ at the expense
of O(#A, ) operations. For higher dimensions, in particular, this seems
very tempting, since a high degree of adaptivity can be obtained without
worrying about the substantial complications caused by mesh refinement
strategies in conventional finite-difference or finite-element schemes.

On the other hand, there are still many points that need to be carefully
addressed.

(1) If the boundary 09 is fairly regular, a standard multilevel finite element
scheme, at least in the 2D case, combined with the existing adapt-
ive refinement schemes (see, for instance, Bornemann, Erdmann and
Kornhuber (1996), Bank and Weiser (1985)) applied directly to the
problem on 2 would realize at least the same favourable complexity.

(2) If the boundary has very little regularity, it is not clear how to properly
balance the regularity of the extension to avoid introducing artificial
singularities, and how to realize the extension numerically.

(3) For problems in R™ with n > 2, and nonconstant diffusion matrix
A(z) in (2.4), the treatment of the boundary integral equation arising
from (8.9) and (8.10) may no longer be so trivial, let alone the extension
problem.

Nevertheless, this approach offers a methodology for separating the bulk of
computation in the highest spatial dimension from the boundary treatment.

8.3. Lagrange multipliers

The following alternative is in principle by no means new, but has been to
some extent revived by the development of wavelet schemes; see, for example,
Babuska (1973) and Brezzi and Fortin (1991). The idea of appending essen-
tial boundary conditions by means of Lagrange multipliers has been taken
up again and analysed from the point of view of multilevel schemes, in Kun-
oth (1994) and Kunoth (1995). Suppose that  is a cube containing €, let

a(u,v) = (Lexttt,v)g and M = (Hs—ﬁ(aa))*, when B maps H*({2) onto
H*B8(dQ). Choosing H = H*(Q) or H = HS(Q) or the subspace H;(Q)

consisting of periodic functions in H* (Q) and defining

b(v, p) := (v, whaq, (8.11)
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the corresponding weak formulation of (8.7) requires finding (u,p) € H x M
such that
a(u,v) +b(v,p) = (f,v)g, vEH,

(8.12)
b(u, p) = 9 peM.
The solution (u,p) of (8.12) solves the saddle-point problem
1
inf — b — 5 —b 8.13
JQHES{}{Q“(”’”) +0(v, 1) = (f,v)g (g,u)} (8.13)

(recall (7.91) and (7.95)). For general conditions under which (8.12) and
(8.13) are equivalent see Brezzi and Fortin (1991). It is also known that,
for instance for £ = —A + a and B = I, the Lagrange multiplier p in the
solution of (8.12) agrees with g% on 0f) where Ov denotes the derivative in
the direction of the outward normal of 0€.

Let us again denote by

(& 9)()-C) -

the operator equation corresponding to (8.12) projected on Sp x My, C H x
M. Recall that solving (8.14) (and hence solving (8.7) approximately for
the above choice of a(-,-) and b(-,-)), requires addressing the following two
issues.

e Ensure that (Sp, M},) satisfies the corresponding LBB condition.
e Find an efficient iteration scheme coping with the fact that the matrices
in (8.14) are indefinite.

The first issue depends on the particular situation at hand; see Bramble
(1981) and Glowinski et al. (1996). Following Bramble and Pasciak (1988),
Kunoth (1994) and Kunoth (1995), the second task can be tackled for in-
stance as follows.

Suppose that the selfadjoint positive definite operator Cj, is a precondi-
tioner for Ay, satisfying

(Cilv,v) ~ (Apv,v), (A — Ch)v,v) < p{Apv,v), v € Sp  (8.15)

Moreover, assume that KXp is a preconditioner for the Schur complement,
that is,

(Kh, 1 mon ~ (BrAy ' Bip, m)aq, b € M. (8.16)

According to Bramble and Pasciak (1988) (see also Kunoth (1995)), one can
use the fact that (8.14) is equivalent to

uy CrAn CrnBB} uy Cnf
My (p) = ( Bh(ChAh —I) thhg’;‘; ) <p> - <thhf _g)a (817)
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and then show that, under the assumption (8.15), My, is positive definite
relative to the inner product

UV = (An = v )+ (i, von.
m v O

Moreover, when in addition (8.16) holds, one can verify that

w2 (G *MuGY?) ~ 1, h—0, (8.18)

T 0
gh‘:(o ICh)‘

Kunoth (1994, 1995) has shown how to construct preconditioners Cp, and
K1, based on multilevel decompositions of appropriate trial spaces S; = S,
M; = My,;, 7 € Ng. For Cp one could use a multilevel Schwarz scheme
or a wavelet-based preconditioner, as detailed in Sections 6.2 (Algorithm
*
1), 6.4 and 6.5. The operator ByA; "B takes (HS_B(BQ)) = HA=3(09Q)
into H5~3(0Q) and thus has typically negative order and BPX or Schwarz
schemes do not apply directly. The following strategy is suggested by the
results in Kunoth (1995). Let I' = 89 and suppose that T, ¥T are biortho-

gonal Riesz bases for Lo(T") with corresponding single-scale bases @g,i);-.
Let

where

Qi = (u, 5 )r@%,
and define B; by

(Bjv, wyr = (Q5 B, u)r, v € Sjyjo, 1€ S(®}),

that is, M; = S(@g). Here the choice of jy € Z leaves some flexibility
for satisfying the LBB condition. One can then realize an asymptotically
optimal preconditioner K; = K, for the Schur complement Bj.A;.'lBj with
the aid of the change of bases scheme (Algorithm 1) from Section 6.2. For
further details see Kunoth (1995).

The tempting aspect of this strategy is that it has the potential to be
extended to a wider class of problems. For instance, using divergence-free
wavelets for discretizing the Stokes problem on a cube or torus and ap-
pending boundary conditions by Lagrange multipliers leads to the type of
saddle-point problem considered above with £ = —A. Moreover, in view
of (8.17), one need not deal with the exact Schur complement but retain
sparse representations of the zero-order operator on I'. ~

On the other hand, one needs suitable multiscale bases ¥, UT on I". When
n = 2, I' is a curve and one can readily resort, at least for sufficiently smooth
curves, to periodic univariate wavelets, or to composite wavelet bases of the
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type considered in Section 4.4. When n > 2, things are more complicated.
However, due to the typically low order of the Schur complement, the bases
Ul WL generally need not be very regular. A more detailed discussion of
constructing wavelet bases on manifolds such as closed surfaces, particularly
in the context of boundary integral equations, is given in Sections 9 and 10.

9. Pseudo-differential and boundary integral equations

So far the discussion has been essentially confined to differential operat-
ors. Of course, the appearance of integral operators is also implicit in
the vaguelette concept. Moreover, they occur explicitly in Section 8.2 as
a solution component for treating partial differential equations (see also
Section 2.2 (d)). In addition to the issue of preconditioning, the numerical
treatment of integral operators or, more generally, of operators with global
Schwartz kernel faces a further serious obstruction: conventional discretiz-
ations lead to dense matrices so that both assembling these matrices and
solving the linear systems quickly become prohibitively expensive for real-
istic problems. In fact, direct solvers require the order of N3 operations
when N denotes the problem size, and each matrix vector multiplication in
an iterative method is of the order N2. A conceptual remedy is to perform
the matrix vector multiplications only approximately within some tolerance.
In many cases this indeed allows one to reduce the computational complexity
to almost linear growth, if the analytical background of the problem is prop-
erly exploited. Examples of this type are panel clustering (Hackbusch and
Nowak 1984, Hackbusch and Sauter 1993, Sauter 1992) or the closely related
multipole expansions (Carrier, Greengard and Rokhlin 1988, Greengard and
Rokhlin 1987, Rokhlin 1985). A similar finite difference-based approach is
presented in Brandt and Venner (preprint) and Brandt and Lubrecht (1990).

Yet another direction has been initiated by the startling paper by Beylkin
et al. (1991). As announced in Section 1.5 (c), the representation of cer-
tain integral operators in wavelet coordinates is nearly sparse (see Sec-
tion 1.3). Roughly speaking, the idea is to replace the exact stiffness matrix
Ay = (L¥;,9,)T by a compressed matrix A§ arising from A by setting
all entries below a given threshold to zero. Beylkin et al. (1991) have shown
that the product A%d, d € RN, Ny = dim S(® J), is still within accuracy
€ from A ;d if only the order of Nylog N; entries in A are different from
zero. This result has since started a number of investigations centred upon
the following questions.

(1) How to deal with operators of nonzero order?

(2) What can be said about other schemes such as collocation?

(3) How to deal with nonperiodic problems, specifically with boundary in-
tegral equations on closed surfaces?

(4) What can be said about asymptotics, that is, how sparse can A§
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be made while still guaranteeing that the solution exhibits the same
asymptotic accuracy as the solution of the uncompressed system?

(i) Beylkin et al. (1991) consider a zero-order operator, so that no precon-
ditioning is necessary. Important applications (see Section 2.2 (d)) involve
operators of order different from zero, such as the single-layer potential
operator. Aside from a possible need of regularization in such cases, pre-
conditioning again becomes necessary. For operators of order minus one,
a preconditioner-based on multigrid techniques was developed by Bramble,
Leyk and Pasciak (1994), by introducing a suitable discrete norm for H~!.
One then obtains a fast method by combining this concept with any of the
above mentioned fast matrix-vector multiplication schemes. It seems that,
in the context of wavelet-based schemes, the preconditioning of operators of
any order, as explained in Section 6.2, and its effect on matrix compression
were first solved by Dahmen, Prodorf and Schneider (19935) and Dahmen
et al. (1994b).

(ii) While Beylkin et al. (1991) only consider a ‘classical Galerkin scheme’,
in practice collocation is often preferred to Galerkin schemes as a discretiza-
tion tool for integral operators, because it reduces the dimension of numer-
ical integration. Comparatively little is known about stability criteria for
collocation schemes in that context. The class of classical periodic pseudo-
differential operators

(L)) = 3 o(x, k)a(k)e2™*=, (9.1)

kezn

where 4(k) are the Fourier coefficients of u, was chosen by Dahmen et al.
(1994¢) as a model setting for studying the following issues: stability criteria
for various types of elliptic pseudo-differential operators and various types
of generalized Petrov—Galerkin discretization in a multiresolution context,
as well as an asymptotic analysis of fast solution by compression techniques.
The schemes considered there are of the type (6.3) with projectors of the
form

Piv =" 1k(v)bjk,

kezn /29Zn

where ®; are periodized refinable single-scale bases and

njk(v) = 27" 2 (v(27(- + k)

arise from some fixed functional 7 defined on S(L®;). Thus n = 6(- — o)
corresponds to collocation while n = ¢ covers the Galerkin scheme. The
operators £ under consideration are assumed to be elliptic in the sense that
the principal part og(z,§) of their symbol o(z,&) is coercive, that is, for
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some 6 > 0 one has
Reoy(z, &) = |€)2H, for |€] > 6, =z eR"/zZ™ (9.2)

The main result of Dahmen et al. (1994c¢) can be stated as follows. For
any fixed y € R"/Z", let o,(k) := oo(y, k) induce the constant coefficient
operator L. Let

an(w,y) == Z oy(w + onk)(w + 2mk)H(w + 27k)
kezn
denote the numerical symbol relative to L,, which under suitable assump-
tions on ¢ is well defined. Here 7 is the Fourier transform of n in the

distributional sense. The numerical symbol is called elliptic (see Wendland
(1987)) if

jon(w,9)] 2 |0l forwe [-1,1]", andyer?/z".  (9.3)

A freezing coefficient technique based on superconvergence results in con-
nection with the so-called discrete commutator property is used by Dahmen
et al. (1994¢) to show that the generalized Petrov—Galerkin scheme (6.3) is
(s, r)-stable, in the sense of (6.4), if and only if the scheme is (s, r)-stable for
Ly for all y € R®/Z™. This in turn finally yields that, under the above as-
sumptions on £, the scheme (6.3) is (s, r)-stable if and only if the numerical
symbol oy, is elliptic in the sense of (9.3). Condition (9.3) naturally extends
the stability condition (4.11), which refers to £ = 7.

This criterion is useful for verifying stability of collocation schemes where

f) = 1 (compare with (7.28)); see, for instance, Dahmen et al. (1996a).
(iii) The above-mentioned results on periodic pseudo-differential equations
immediately apply to boundary integral equations for two-dimensional do-
mains with smooth boundary, which, via a smooth reparametrization, can
be identified with the circle. Univariate periodic wavelets provide all the
necessary tools for this case. Important contributions for Galerkin schemes
are given by von Petersdorff and Schwab (1997b).

However, when the boundary integral equation lives on a surface of higher
dimension, being able to treat periodic problems is ultimately not sufficient
any longer. This puts conceptually new demands on the tools, that is, on
the construction of appropriate wavelets. This issue will be addressed later
in more detail.

To see how well the analysis of the periodic case predicts the right be-
haviour in more realistic situations, a multiscale collocation method for the
double-layer potential equation on two-dimensional polyhedral surfaces in
R3 was developed and tested by Dahmen et al. (1994a). The multiresolu-
tion spaces consist of continuous piecewise linear finite elements relative to
uniform triangulations of the (triangular) faces of the polyhedron. The func-
tions indicated in Figure 2 were used as wavelets. Since in this construction
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the order of vanishing moments decreases near face edges, this approach was
still provisional. Although, in contrast to the torus, the surfaces considered
by Dahmen et al. (1994a) were no longer smooth, by and large the same
compression and convergence behaviour could be observed as predicted by
the analysis of the idealized situation. However, full practical use of these
findings requires computing the compressed matrices A5 at costs which are
essentially of the order of nonvanishing entries. Meanwhile substantial pro-
gress has been made in this regard, which we sketch later; see Dahmen and
Schneider (1997b) and von Petersdorff and Schwab (1997a).

(iv) While in Beylkin et al. (1991) the compression rate referred to a
fized accuracy €, an asymptotic analysis was carried out in Dahmen et al.
(1993b), Dahmen et al. (1994b), von Petersdorff and Schwab (1997b) and von
Petersdorff, Schneider and Schwab (1997). In particular, Schneider (1995)
has shown that, under certain assumptions on the domain and on the wavelet
bases, A can be compressed to O(/N;) nonvanishing entries while still real-
izing the asymptotic accuracy of the unperturbed scheme. Recently, signific-
ant progress on a practicable realization in terms of a nearby asymptotically
optimal fully discrete scheme for zero-order operators was accomplished by
von Petersdorff and Schwab (1997a).

In summary, the practical success of such concepts requires handling the
following central tasks.

(a) Construct appropriate wavelet bases ¥, ¥ defined on a manifold T such
that the underlying operator can be preconditioned well and efficiently
compressed.

(b) Develop a scheme for computing the compressed operator at an expense
that stays proportional to the number of nonvanishing entries.

(c) Combine these techniques with adaptive space refinement strategies,
that is, with identifying sets A C V adapted to the problem at hand.
By Remark 6.3, these together would provide an asymptotically optimal
scheme.

In principle, all three goals are in sight. We will first sketch some basic
ingredients of several contributions to (a) and (b).

9.1. Geometry considerations

The numerical treatment of realistic boundary integral equations obviously
requires more than periodized wavelets. A natural starting point is the
representation of the boundary manifold I' = 9. In the context of boundary
integral equations, one is primarily interested in spatial dimensions n = 1,2
of I'. However, the same ideas also apply in principle to other manifolds,
such as bounded domains in R3, so it is worth keeping n arbitrary at this
point.



186 W. DAHMEN

Concrete free-form surface representations are generated by CAD pack-
ages. There, a surface I' is usually parametrically defined, that is, " is a
disjoint union of (open) patches I,

M
r=Jn, LoinTy=0, i#l (9.4)
i=1
The global regularity of I' is usually described with the aid of an atlas
{(T';, k) }M,. This consists of a covering I' = U, I'; and associated regular
mappings
Fii:ﬁiﬁfi, E]iCRn, i=1,...,M,

that is, x; and K, 1 are smooth mappings so that, in particular, the corres-

ponding functional determinant |Ox;(z)| does not vanish on I';. Moreover,
for 0 c NM, G;, one has

Iﬁ:iID:Fi, i=1,...,M. (95)

The set T is called a C™ manifold, respectively Lipschitz manifold, if the
mappings are C™, respectively Lipschitz. In practice, one does not work
with coverings. Instead the global smoothness requirements are then trans-
lated into relations between the control parameters in the mappings x; cor-
responding to adjacent patches. Again, these considerations also apply to
domain decompositions of domains in R3.

9.2. Function spaces on I’

The discussion in Section 6 has made it very clear that the qualification
of a wavelet basis ¥ for a given problem is closely related to the relevant
function spaces. Thus one has to understand such function spaces defined
on I'. Denoting by ds the surface measure on I', the space Ly(T") of square
integrable functions on I' is a Hilbert space with respect to the inner product

(u,v)p = /u(m)@dsx (9.6)
r
With the aid of the above atlas, one can also define Sobolev spaces H*(T")
on I'. On the other hand, it would be extremely useful to relate the function
space structure back to the parameter domain [J. Locally this is possible.
Since the k; are smooth, it is easy to see that for s > 0

H*(T;) ={v € Lo(Ty) : vo k; € H¥(O)}. (9.7)

Moreover,
M

(u,v) := Z(u, V)5, (9.8)

i=1
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where

(u,v); = /(u o k;)(x)(v o K;)(x) dx, (9.9)

0

defines an inner product on I' and
(0,0) ~ (v,0)r, € Ly(T). (9.10)
Equations (9.7) and (9.8) suggest the norms

M
[WlI2 == lvll3sr,y, 0 <s, (9.11)
=1

for the space [T, H*(T;).

Since the properties of the operator equation are usually specified in terms
of a global topology on I, such as the one induced by spaces H*(I"), say, it
is important to know how these spaces relate to each other. While H*(T') is
generally a closed subspace of [T}, H*(I';) with respect to the norm (9.11),
one even has

M
1 1
HYT) =[] H*(TY), —5<s<3 (9.12)
=1

that is, both spaces agree as sets and the norms are equivalent. However,
there is, of course, the restriction s < 1/2, which will be seen later to be an
unfortunate obstruction.

9.3. Multi-wavelets

The above geometric setting suggests the following natural concept; see
Alpert (1993), Alpert, Beylkin, Coifman and Rokhlin (1993), von Petersdorff
and Schwab (1997a) and von Petersdorff et al. (1997). Let II; be the set
of polynomials of total degree less than d on R™ and let P := {P, : |[v| =
V1 + ...+ v, < d} be an orthonormal basis of Il on O, which can be
generated by the Gram—Schmidt process from the monomial basis. For
simplicity, let us now write O = (0,1)". A similar variant of what follows
can be developed for the standard simplex (and even more generally for
invariant sets (Micchelli and Xu 1994)) as well. Let O be divided into 2/
congruent cubes

Qjy:=2"7(n+0), ne{0,...,27 —1}" = Ej,

and let 7;,(z) := 2/z — 1 denote the affine transformation that takes O;,,,
onto 0. Now one easily generates spaces of (discontinuous) piecewise poly-
nomials of degree < d relative to the partition of O into O;,, n € E;. Trans-
porting these spaces to the patches I'; then creates ‘piecewise polynomials’
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defined on I'. Formally, this can be described as follows. Let
Aj:={k=(i,nv):neE;vell,|v|<di=1,..., M},

and set for k = (¢,7,v)

— 2jn/2(¢jnv0”"i_1)(w)v zeT;,
¢J,k($) = { 0, z ¢ T,
. _ (pv o Tj,n)(y)a y € Ojq,
Cimv(y) = { 0 olse. (9.13)

Obviously the spaces S(®;) are nested and their union is dense in L(T').
The construction of orthogonal complements between adjacent trial spaces

works as follows. Again using Gram—Schmidt, one can construct an ortho-

gonal basis {r; : [ = 1,...,(2" — 1)(";‘_111)} of the local space S(P) in

SH{e1,ny : 1 € Er,|v| < d}). The complement basis ¥; in S(®;41) is then
obtained by (9.13) with p, replaced by r;. The collection

v = (I)()UU\I/]'
j=0
= @U{pa:A=(,5),1<i<M,j>0,1<1< (2 - )"},

is by construction orthonormal with respect to the inner product (-, -) defined
by (9.8), (9.9). Thus every v € Ly(I') has a unique expansion

v=(v, )T, |ollym) ~ 1, B)lle,- (9.14)

Moreover, for every ¢ € {1,..., M} and any polynomial p € II; the general-
ized moment conditions hold

(porl9)=0, e\ (9.15)

This relation implies that for any smooth function f on I' one has for A =
(4,3,0), (A =17,

(Aol € 27D flypesuupp ) (9.16)

In fact, setting w;(y) = |0ki(y)|, 9(y) := wi(y)(f o Ki)(y), yields

(oonr = [ 9@ e r) ) dy.
O

Since, by construction, [ p(z){¥xok;)(x)dz =0, p € Il4, (9.16) follows from
0

Taylor expansion of g around any point in supp ) o x;, and the fact that
w;i(y) and k; are smooth.
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Using Proposition 5.1, it is also standard to confirm the direct estimates
(Dahmen and Schneider 1996)

o= (0,20%sl 0y S 277 I0la, (9.17)

provided that I' is smooth enough to admit the definition of H%(T) in the
above sense.

This approach can be extended to other parameter domains exhibiting
a certain selfsimilarity; see Micchelli and Xu (1994). The following points
should be kept in mind, however.

(i)

(i)

Note that the order of moment conditions in (9.15) equals the order
of accuracy in (9.17). It will be seen later that asymptotic optimality
sometimes demands that the order of moment conditions is higher than
the order of exactness.

The multi-wavelet basis is very flexible and relatively easy to imple-
ment. On the other hand, due to the discontinuous character of the
trial functions, dim S(®;) = N2 ("jf;l). This effect could be damped
by forming composite wavelet bases according to the following recipe
(Dahmen and Schneider 1996).

e Construct biorthogonal wavelet bases U5, U on the parameter do-
main O by taking tensor products of the bases discussed in Sec-
tion 4.4.

e Lift these bases with the aid of the parametric mappings «; as

above to composite biorthogonal bases W,V with respect to the
inner product (-,-) (9.8).

This alternative has the following attractive features.

e Although the same order d of exactness (9.17) is retained, one has
dim S(®;) < N2™, which is the fraction (”;ﬁ;l) ! of the dimension
of the corresponding discontinuous space. Moreover, on each patch
the trial functions are still d — 2 times differentiable.

e The order d of vanishing moments can be chosen as d > d inde-
pendently of the order d of accuracy, which will be seen to support
compression.

e The Riesz basis property of the biorthogonal bases is not quite
as straightforward as in the orthonormal case. However, it is still
straightforward to verify the validity of direct and inverse estimates
as in Section 5.1 (see Proposition 5.1), so that Theorem 5.8 applies
and confirms, among other things, (9.14) in this case.

e Recall from (6.14) and Theorem 6.1 that optimal preconditioning
depends on the validity of norm equivalences (6.1) in a range (—7%, 7)
containing t, where 2t = r is the order of £. Thus, by (9.12), bases
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of the above type are not optimal for the single-layer potential op-
erator, which requires —% € (—%,7). Since discontinuities are con-
fined to the patch boundaries, this adverse effect is expected to be
milder than for a basis with increasingly dense discontinuities. The
validity of norm equivalences of the form (6.1) for function spaces
on manifolds will be seen later to be closely related to suitable char-
acterizations of the function spaces with respect to partitions, not
coverings, of the manifold (see Section 10.1 below).

Nevertheless, for operators of order zero, multi-wavelets are admissible.
This program has been carried through by von Petersdorff and Schwab
(1997a), arriving ultimately at a fully discrete scheme which solves the
discretized boundary integral equation with matrices of size Ny at a cost
of O(Nj(log Nj)*) operations and storage up to nearly asymptotically op-
timal accuracy. Some ingredients of the schemes in Dahmen et al. (1994b),
Dahmen and Schneider (1997b) and Schneider (1995) will now be sketched,
primarily from the point of view taken in Dahmen et al. (1994b), namely to
identify the precise requirements on a pair of biorthogonal bases ¥T, T for
L (T") that gives rise to an symptotically optimal scheme. These findings, in
turn, will then guide the construction of suitable bases for the general case.
One can then also get rid of logarithmic factors in the work estimates.

9.4. A basic estimate

In the following we will assume that the operator

Lv= / K(-,z)v(z) ds, (9.18)
r

satisfies the estimate (2.23) and that its Schwartz kernel K is smooth except
on the diagonal, such that (2.25) holds (see Section 2.3). I is an (at least
Lipschitz) manifold of dimension n. To solve the equation

Lu=f, (9.19)

we wish to employ a pair of biorthogonal wavelet bases ¥ = {5 : A € V},
U = {¢h: A € V} with V = AL UV_ as before. We will assume for the
moment that this pair is ideal in the following sense.

Assumptions. For any order of accuracy d we have dth order of vanishing
moments

(pos™h4x)=0, AeV_, pell (9.20)

where  is a regular parametrization as above. Moreover, the pair of biortho-
gonal bases ¥, ¥ satisfy the norm equivalence (6.1) (or (5.42)) for the range



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 191

€ (—9,7). The regularity bounds -, ¥ are related to £ by
it <77 (9.21)

where again r = 2t is the order of £. Of course, we will also assume that
the Galerkin method is stable, that is, (6.7) holds.

The first important step is to verify an estimate of the type (7.11) (see
also (1.11)). Denote again by |A| the scale associated with 15 and by (2, the
support of 1y. In view of the moment condition (9.20), the argument leading
to (9.16) can be applied to each variable consecutively (recall Section 1.3),
which provides

9= (|A[+X)){(n/2+4)
(dist (€2, Qy))r2d+2t’

whenever dist(2y, Qy) = 2~ ™(ALND (Dahmen et al. 19945, von Petersdorff
and Schwab 19975, von Petersdorff and Schwab 1997a). When the supports
of ¢, and v/ overlap, or more generally, when dist(€2y,Qy) < 27 min(|ALIND)
one can use the norm equivalence (6.1) as follows (Dahlke et al. 1997b). To
this end, suppose that £ has the following additional continuity properties.
There exists some 7 > 0 such that

|Av|| gr-e+s < |[0llprevs, vE HT,0< |s| < 7. (9.23)

(9.22)

[(Loa, )| S

Without loss of generality one can assume that [A| > |N|, that is, A €
V_, X € V. Using Schwarz’s inequality and the continuity of £ (9.23) gives

(Lon, )| < NLoxll-esall¥allme-o S Ilox o [allae-o. (9.24)
Thus, when
c<T, t+o<y, t—ao>-7%,

one can apply now the norm equivalence (5.42) to each factor on the right-
hand side of (9.24) which, upon using biorthogonality, yields

[(Lapxr, p)] < 2 NFIND Qo (IXI=IAD (9.25)
Combining (9.22) and (9.25) and assuming that
n/2+d+t>o, (9.26)

one arrives at the following central estimate

o= lIA=Vi]o

2= NN (Lap < —.
I( P 7,D,\>| ~ (1+2min(|/\|,|)\’|) diSt(Q)\,Q,\’))n+2d+2t

This is exactly of the form (7.11). Note that the preconditioning has already
been incorporated so that, in agreement with (7.11), the quantities on the

(9.27)
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left-hand side now represent a zero-order operator. Note also that the num-
ber of vanishing moments d determines the decay on fixed levels. It was
important above in (9.26) to be able to choose d large enough.

As earlier, let ¥/ = @, Uj:() ¥;. The idea is to replace by zero those
entries in the stiffness matrices

A‘I/J = <£\IJJ7 QJ)%:

which, according to the a priori estimates (9.27), are guaranteed to stay
below a given threshold. However, that would leave the order of J27 entries
for which no decay is predicted by (9.27) (Dahmen et al. 19945, Dahmen
and Schneider 19975, von Petersdorff and Schwab 1997b, von Petersdorff
and Schwab 1997a). A further reduction requires more subtle estimates
developed by Schneider (1995). To this end, we will assume that the wavelets
are, up to parametric transformation, piecewise polynomials, and we will
denote the singular support of ¥y (Dahmen, Kunoth and Schneider 1997,
Schneider 1995) by

Qﬁ/ = Sing supp ’(b)‘/,

which consists of the boundaries of the subdomains in 2y, whose parametric
preimages in [ are maximal regions where ¥y o k; is a polynomial (in this
case of order d). If |N| < |A] and dist (2, Q) < 27V then it is shown
in Schneider (1995) that the estimate

c < 9—[Al(1+d)g|N| 0.98
[(LYar, ¥a)r] < Jp— Sird (9.28)
(dist (2, 23/))

holds.

9.5. Matriz compression

With the above estimates at hand, a level dependent a priori truncation rule
can be designed in such a way that, on zeroing all entries which stay below
the corresponding threshold, the resulting compressed matrix A{,, is sparse
and contains only O(N;) nonvanishing entries. As earlier, Ny := dim S(®)
is the dimension of the trial space of highest resolution. In addition to the
above constraint (9.26) on d it is important here to have

d<d+2t. (9.29)

Thus for operators of nonpositive order the order of vanishing moments
should ezceed the order of accuracy of the underlying scheme.

The compression proceeds in two steps. Fixing some a > 0 and d' €
(d,d+2t), let for j = |Al, 5" = |N|

bjj ~ max {a277,a 279 a2V L -2 I (@+d)—j@d+d)/@d+20) (g 30)
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and set

! i i ’ < NI
CL}\’)\/ = { (A\PJ)X,)\ 5 if dlSt(QAa Q)\ ) = bj,] 5 (931)

0, otherwise.

Hence the bands get narrower when progressing to higher scales. In a second
step, one sets

a}\’)\,, 4" < j and dist(Qy,05/) < b;.g .,
(Ao AN = j < j' and dist(Q5, Qx) < b7, (9.32)
0, otherwise.

Here the truncation parameters bf ;+ controlling the distance from the sin-
gular support are given by

b‘.]sz ., ~ max {al 2—j,a/ 2—j”al2(J(2d'—2t)—max{j,j'}d—(j+j')d’)/(d+2t)}’ (9‘33)
and the parameters a, a’ are fixed constants independent of J. For instance,
a determines the bandwidth in the block matrices Aj; = (Ay)gg =

({Lrr, ¥a))ja,|aj=g- The choice of a,a’ will be further specified later (Dah-
men et al. 19945, Schneider 1995).

Theorem 9.1 If the moment conditions (9.20) hold for d satisfying (9.29),
then under the above assumptions on £ and ¥, ¥ the compression strategy
(9.31), (9.32) generates matrices Ay, containing only O(N;) non-vanishing
entries.

9.6. Asymptotic estimates

The basic tool for estimating the effect of the above compression is a suitable
version of a weighted Schur lemma. Recall that if for some matrix A =
(as,5)ijer there exists a positive constant ¢ and a sequence b with b; > 0,
such that

Z la; ;lbi < cb; forall jel,

i€l
and
> laijlb; <cb; forall jel,
jel
then ||A|| < ¢, where || - || denotes the spectral norm. In the present context

the b; are chosen as 27%7 for suitable choices of s > 0. Again denoting by
D? the diagonal matrix with entries (D®)y x = 2s|’\|5,\,>\/, the Schur lemma
can be used to show that

ID7(A gy —AfI,J)D}gH < J—la—Zt—2J2—J(s+§—2t)‘
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At this point the norm equivalences enter again. In fact, one infers from the
above estimate combined with (6.1) consistency estimates of the form

1(Ls = L) ull oz S @~ 2729276 u (9.34)

~

where a > 1 is fixed, £;, LS are the finite-dimensional operators corres-
ponding to Ay and Ay, respectively, and the range of the parameters s
and 7is —d+ 2t < s <, =y < 7 < d. As before, v and d reflect the
regularity and the order of accuracy of the trial functions. In particular, for
any € > 0 one can choose a > 1 such that

I(£r = L ullg-+ < ellullge - (9.35)

~

A perturbation argument combined with these estimates ensures stability of
the compressed operator in the energy norm and even for lower norms, we
have

1L5vsllgs-2e 2 vsllms, v € S(®g), (9.36)

for 2t — d < s < t; see, for example, Dahmen et al. (1994b).

These facts can then be combined to prove the following result (Dahmen
et al. 19945, Dahmen et al. 19935, Dahmen and Schneider 19975, Schneider
1995).

Theorem 9.2 Under the above circumstances the compressed system

AS,dy = (f, )T

possesses a unique solution and uS := dZW¥’ has asymptotically optimal
J J Y
accuracy
J(r—
le =Sl < 2707 Jull e (9.37)

where ~d+ 2t < 7 < v, 7 <s,t<s <dand u is the exact solution of
Lu = f. Moreover, the matrices B = ’tAfI, ;D7 have the order of N;
nonvanishing entries and uniformly bounded condition numbers.

By Remark 6.3, one obtains a scheme that solves (9.19) with asymptotic-
ally optimal accuracy in linear time.

We summarize the required conditions on the wavelet basis. To realize an
asymptotically optimal balance between accuracy and efficiency, the regu-
larity v of W, the regularity ¥ of the dual basis W, the order of vanishing
moments d and the order of exactness d of the trial spaces S(® ;) should be

related in the following way.

Regularity v > t conformity 4 > —t preconditioning
Order d convergence rate 277 (2d+2-2t)
Vanishing moments | d > d — 2¢
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9.7. Adaptive quadrature

In the above analysis it has been assumed that the matrix entries (L, ¥a)r
are given exactly. Of course, in general they have no closed analytical rep-
resentation.

In principle, one can first compute the stiffness matrix (L® 7, )T relative
to the single-scale basis ®; (for instance with the aid of the techniques
described in Section 4.2) with sufficient accuracy to preserve the overall
precision of the above scheme. In fact, the multiscale transformation T ;
from (3.25) yields

Ags =T5(LD;,0,)IT;.

However, since (L®;, ®;)r is a dense matrix, this process requires at least
the order of N? operations and storage which would completely destroy the
efficiency of the fully discrete scheme.

To find a more economic strategy, one has to bear the following points in
mind.

e There is an a priori criterion to decide whether a matrix coefficient
must be computed or can be neglected.

e Note that dist (Qx,Qx) > bjx, x| implies that dist (2, Q) > by
holds for 2, C Q, and Q, C Qy, |v| > [A, || = |N|. Thus, one
does not have to check condition (9.31) or (9.32) for all pairs A, .
Exploiting the hierarchical structure of multiscale bases, one needs at
most O(2™/) = O(N;) checks to decide whether or not an entry has to
be computed.

An accurate computation of the remaining nonzero coefficients by numer-
ical quadrature is a difficult task. Significant coefficients involving low-level
wavelets have to be computed with accuracy determined by the discretiza-
tion error of the scheme. We will see later that, based on the construction
outlined in Section 4.4, wavelets with the above ideal properties can be
constructed whose pullbacks to the parameter domain are piecewise poly-
nomials. Hence the approximation of (L, ¥y )r can be reduced to the
evaluation of integrals of the form

K(&, 9)¥x(2)x (9) dsz dsy, (9.38)
ri(00) m(@y)

where O, C O denotes a cube such that ¥ ok; |g, is a polynomial of degree
d — 1. Thus one ultimately has to compute expressions of the type

[ [ H@ym@py ) dsdy, (9:39)

O, Oy
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where py, py are polynomials of degree d — 1 satisfying
IPallweceoy) < 20721, (9.40)

When £;(0)) N 5 (0Ox) = 0, H(z,y) = K(ki(z),ki1(y))|0ki(x)||0ki(y)] is
arbitrarily smooth. Thus high-order quadrature can be used to compute
entries not discarded by the decay estimates. When integrating over pairs
of domains that share an edge, a vertex or are identical, then in general the
integral is singular. In this case some sort of regularization should be ap-
plied to reduce the integral to a weakly singular integral (Nedelec 1982, von
Petersdorff and Schwab 19974a). Then one can use transformation techniques
like Duffy’s trick proposed by Sauter (1992) to end up with analytical in-
tegrals (von Petersdorff and Schwab 19974, Schwab 1994).

The central objective is now to balance the error caused by quadrature
with the desired overall accuracy of the scheme, while preserving efficiency.
Employing adaptive quadrature in connection with a multi-wavelet discret-
ization for zero-order operators, a fully discrete scheme has recently been
developed in von Petersdorff and Schwab (1997a), where essential use is
also made of the analyticity of the kernel K in a neighbourhood of the two-
dimensional surface T in R3. The resulting fully discrete scheme requires
O(N;(log Nj)*) operations. A somewhat different approach is given by
Dahmen and Schneider (1997b), ending up with a slightly more favourable
complexity analysis.

The balancing of errors is guided by the following considerations. The
problem of quadrature has to be seen in close connection with compression
and the special features of multiscale bases. Basis functions from coarser
scales introduce large domains of integration while requiring high accuracy.
In particular, on the coarsest scale A\, \' € A_ the full accuracy 277 (2d'-2t)
depending on J is required, while on the highest scale |A|, || = J the
computation of each entry requires only a fixed number of quadrature points
independent of J. In fact, diam suppwy ~ 277 and (L, ¥ )r) < 272
for |\| = |N| = j. Thus, many entries only have to be computed with low
accuracy, while high accuracy is merely required for a small portion of the
matrix. Using the analysis of matrix compression as a guideline, a careful
balancing of the various effects shows that most matrix entries (L1, ¥\ )r
must be computed with a precision

exn < 277 =20gmax{INLN[H@ +1) gmin{ LN} +1) g -2 max{ AL 1V}
for some d’ > d (Dahmen et al. 1997, Dahmen and Schneider 1997b).

The fully discretized Galerkin method in Dahmen and Schneider (1997b)
is based on product-type Gaussian formulae of order D for approximating
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inner and outer integrals

// dxdy—QD(X)Qy (p-p), forall p,p €llp, (9.41)

where the domains 7 and 7’ are congruent to 0. According to the previous
remarks, the error estimate for the quadrature method has much in common
with estimating matrix coeflicients relative to wavelet bases. The relevant
estimates are summarized as follows.

Lemma 9.3 Let QP ®QB be a product-type Gaussian quadrature method
of order D and 7 C Oy, 7 C Oy/. Furthermore, suppose that £ is a boundary
integral operator with the above properties and I' is a piecewise analytic
boundary surface. In local parametrization let the kernel be denoted by
H(z,y) as above and set G(z,y) := H(z,y)pr(z)px(y). I 7N 7" = 0, then
there exists a constant ¢ such that the estimate

[ [ ¢y dedy— QP  QB(G)

< . 2(|)‘|+l’\'|)(max{diam 7,diam T’})D_d(diam 7)2(diam 7/)?
< st (ma(77), () FFEH D2

holds, provided that 2+ 2t + D — d > 0.

The principal strategy is to choose the diameter of the subdomains pro-
portional to the distance from the singularity while the degree D has to be
adapted to maintain the desired accuracy taking the decay of the entries
into account. Details can be found in Dahmen et al. (1997) and Dahmen
and Schneider (1997b):

In summary the following result can be proved (Dahmen et al. 1997, Dah-
men and Schneider 1997b).

Theorem 9.4 Under the above assumptions the fully discretized com-
pressed system A dF = (f, /)T possesses a unique solution and u‘jq =

(dcq)T\IJJ realizes asymptotlcally optimal accuracy

lu —ufl g S 27079 Jull e (9.42)

~

where —d+ 2t <7 <7, 7<s,t<s < dand uis the exact solution
of Lu = f. Moreover, the nonzero coefficients of the matrix A yos can be
computed at the expense of O(N;) floating point operations and storage.

10. Wavelets on manifolds and domain decomposition

The periodic case is certainly the most convenient setting for constructing
wavelets and exploiting their full computational efficiency. On the other
hand, the application of embedding techniques as described in Section 8
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is certainly limited. For instance, problems defined on closed surfaces, as
discussed in Section 9, cannot be treated in this way. Also, the resolution
of boundary layer effects may cause difficulties.

This has motivated various attempts to extend wavelet-like tools to more
general settings. This is, for instance, reflected by the general framework
in Section 3, and concepts like stable completions; see Section 3.2 and Car-
nicer et al. (1996). The so-called lifting scheme (Sweldens 1996, Sweldens
1997) is very similar in spirit. Its applications, for instance in computer
graphics, also demonstrate its versatility and efficiency in connection with
unstructured grids (Schroder and Sweldens 1995). Unfortunately, the un-
derstanding of analytical properties like stability and norm equivalences in
a more general setting still appears to be in its infancy. Attempts to develop
stability criteria that work in sufficiently flexible settings have been sketched
in Section 5; see Dahmen (1994) and (1996). Some recent consequences of
these developments will be indicated next.

Many problem formulations suggest in a natural way a decomposition of
the underlying domain into subdomains, which in turn are often represent-
able as parametric images of cubes. As was indicated in Section 4.4, wavelet
bases on cubes are well understood and much of the efficiency of wavelet
bases in the ideal setting can be retained. This can readily be combined
with the idea described in Section 9.2 to obtain wavelet bases with essen-
tially the same nice properties on any domain €2, as long as Q@ = x(0) is a
smooth regular parametric image of the unit cube, that is,

|Ok(z)| #0, ze€O. (10.1)

In fact, the canonical inner product (-,-)o can be replaced by the inner
product (see (9.9))

(u,v) = / (wo k)(@)(vor)(@) de, (10.2)
0
which induces an equivalent norm for Ly(2), say. Moreover, when F C
L9(92) denotes a Besov or Sobolev space on 2, it can be pulled back to a
corresponding space on O by

FQ) ={gox1:gc F(O)}, (10.3)

with
[ollF@) ~ llvo sl p@)- (10.4)
Any biorthogonal wavelet bases U, ¥ on O then induce collections ¥ :=
Wok™ !, ¥ := ¥o k! which are biorthogonal Riesz bases on Q relative
to the inner product (10.2). On account of (10.4), they inherit all the norm

equivalences satisfied by ¥, ¥. In this way, all computations are ultimately
carried out on the standard domain 1.
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Of course, the qualitative properties of the bases U<, U depend on the
mapping k, which in practice confines this approach to rather simple do-
mains §2. However, the next step, which was made, to some extent, in
Section 9, is to consider domains that are disjoint unions of such simple do-
mains. Modelling closed surfaces, as considered in Section 9.1, falls exactly
into this category. Although the following facts are by no means restricted
to this case, we will adopt the same notation and assumptions made in Sec-
tion 9.1 but keep in mind that I' may as well denote some bounded domain
in Euclidean space.

The whole preceding development shows that the power of wavelet dis-
cretizations hinges on its relation to certain function spaces, in particular,
on corresponding norm equivalences. However, this is exactly the point
where one easily gets stuck. In fact, recall from (9.12) that managing norm
equivalences on the individual spaces F(I';) with the aid of the transpor-
ted bases UTi, ¥ does not generally imply corresponding relations with
respect to the global space F(I'). The problem is that the norms || - ||z

and (XM, |- “%‘(Fi))l/ 2 do not generally determine the same space. Below we

indicate several attempts, mostly referring to work in progress, to overcome
this difficulty.

10.1. Composite wavelet bases

The following comments are based on Dahmen and Schneider (1996), and
related special cases considered in Jouini and Lemarié-Rieusset (1993). The
basic idea is to glue the bases defined on each patch together so that the
resulting global bases are at least continuous on all of I". One way to achieve
this is to carefully inspect the construction of biorthogonal spline wavelets
on [0,1], described in Section 4.4. One can show that the biorthogonal gen-
erator bases ®; and ®; on [0, 1] can be arranged to have the following prop-
erty. All but one basis function at each end of the interval vanish at 0 and 1.
This fact can then be exploited to construct pairs of refinable biorthogonal
generator bases @5, <I>5, which belong to C(I'). Unfortunately, the wavelets
corresponding to these global generator bases cannot be easily obtained by
stitching local wavelet bases together. The reason is that not all the wavelets
for the local bases can be arranged to vanish at the patch boundaries. Nev-
ertheless, one can employ the concept of stable completions from Section 3.2
to construct compactly supported biorthogonal wavelet bases WT', U on T,
which also belong to C(I") (Dahmen and Schneider 1996). The disadvantage
of this construction is that, since some wavelets have support in more than
one patch I';, moment conditions of the form (9.20) no longer hold in full
strength near the patch boundaries.

Nevertheless, since all basis functions are local and since the trial spaces
S (CI)E) retain the same approximation properties as the local spaces transpor-
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ted from O, these spaces can be used for conforming Galerkin discretizations
for second-order problems, even in connection with nonoverlapping domain
decomposition strategies, for instance. On the other hand, it is clear that
such an approach is limited for principal reasons. For example, it does not
provide the ideal bases in the sense of Section 9.6 for operators of order
minus one. More generally, this approach is not suited for handling duality.

An alternative approach, which is interesting from several points of view,
will be outlined next.

10.2. Characterization of function spaces via partitions of domains

In the following we will denote by F'(I') spaces of the form H*(I') or Besov
spaces, where IY C T'. The problem with (9.12) is that the spaces F(T') are
usually defined through overlapping coverings of T', not through a partition
of I'. Therefore a fundamental step towards overcoming limitations of the
type (9.12) is first to derive a characterization of function spaces on I' in
terms of partitions. Such characterizations were developed by Ciesielski and
Figiel (1983), in terms of mappings

M M
T:F(0) - [[xe (R(FD)), V:FI) = [[xe.(P(FD)), (10.5)
1=1 i=1
defined by
Tv = (xr, Py, Vo= (xrPo)l;. (10.6)

Here xr, denotes the characteristic function of I'; and the P; are certain
projectors on Lo(T"), constructed in such way that T and V are actually
topological isomorphisms with respect to F, and the factors xr, (P (F(I)))
are closed subspaces of F'(I';) determined by certain homogeneous trace con-
ditions.

The main focus of Ciesielski and Figiel (1983) was the existence of un-
conditional bases of Sobolev and Besov spaces on compact C°°-manifolds.
The objective of Dahmen and Schneider (1997a) is to employ such concepts
for the development of practicable schemes. This requires us to identify
practically realizable projections P; needed in (10.5) and to combine this
with the recently developed technology of biorthogonal wavelet bases on O.
This provides practically feasible wavelet bases for the component spaces
xr; (P (F(T))), and hence through (10.5) also for I'. The resulting bases can
be shown to exhibit all the desired properties listed in Section 9.6. The main
ingredients of this program can be outlined as follows.

Ordering of patches o
First one orders the patches I'; in a certain fashion. If I NI'; := ¢;; is a
common face and ¢ < [, then ¢;; is called an outflow (inflow) face for I'; (I';).
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8F1T , BI‘f are called the outflow and inflow boundary of the patch I';. Let
I‘I denote an extension of I'; in I" which contains the outflow boundary 6I‘1T
in its relative interior and whose boundary contains the inflow boundary
GF% of I';. Thus FI could be taken as the union of I'; and those patches
whose closure intersects the relative interior of the outflow boundary BFJ .
Analogously one defines F% with respect to the reverse flow.

Extensions

Now suppose that E; is an extension operator from the domain I'; to FI .
It turns out that the topological properties of the projectors P; to be con-
structed for (10.5) hinge upon the following continuity properties of the
extensions E;. To describe this, the following notation is convenient. Let

Fi’

denote the trivial extension of f € F(I';) to I‘I and define
FIT) = {f € FT): fTe FTDY, WMlrey = 1M ey

Thus F(I';)T consists of those elements in the local space F(I';) whose trace

vanishes on the outflow boundary BFI. Again the spaces F(T;)! are defined
analogously.
Now suppose that the extensions E; satisfy

IEifl gy S Wfle@y, WED rey S Ifllpgy. (10.7)
T) (T3)

Due to the simple form of the parameter domain 0O, such extensions can
be constructed explicitly as tensor products of Hestenes-type extensions
(Ciesielski and Figiel 1983, Dahmen and Schneider 1997a). However, some
deviations from the construction in Ciesielski and Figiel (1983), which are
essential from a practical point of view, will be mentioned later.

Topological isomorphisms
Given F; as above, one now defines

Pif =B (xof), P =B (f - S Bf), i=2...,M. (108)

I<i

One can prove the following facts (Dahmen and Schneider 1997a).
Theorem 10.1 One has
xr, (P(F(D))) = F(Ta)',  xr (P (F(D))) = F(Ty)T. (10.9)
The mappings
T:fo {xnPfhl, Vife B L (10.10)
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define topological isomorphisms acting from F(T') onto the product spaces
M 1F (Ty)t, TIM, F(T;)1, respectively, whose inverses are given for v =

(vi)M, € Hz 1 L2(F ) by
M

M
Sv = ZPiXFi’U,', Uv = ZPi*Xpivz-, (10.11)
i=1 =1

respectively. Specifically, one has

M M
FIT) = [[Fa@)t = JIF@)T,
i=1 =1
and
1
3 M , 3
IU”F(F) (Z“PU”FF)) N(Z“Pi*U“F(Fi)T> , veFD).
i=1

(10.12)
Moreover, the maps T, V extend to isomorphisms from F*(I") onto the spaces
[IM, F*(Ty)! and HM F*(T';)7, respectively, and

M 2
lollpery ~ (Z ||P]-v||2p*(rj)i) L wePD).  (10.13)
]:
Note that duality is incorporated in a natural way.

10.83. Biorthogonal wavelets on T’

With Theorem 10.1 at hand, one can now construct wavelet bases on I that
give rise to the desired norm equivalences. The basic steps can be roughly
sketched as follows.

First, for each 7 let &; be an extension of x; (with as much smoothness

as permitted by the regularity of I‘ll) and Dil a hyperrectangle such that
;%,(E]ll) = Ff and &; |o= k;. As above, the spaces F(O)* then consist of
those elements in F'(0O) whose trivial extension to Df by zero belongs to
F(@@}).

e For each pair of complementary homogeneous boundary conditions in
F([0,1]), construct biorthogonal wavelet bases on [0, 1] based on the
schemes described in Section 4.4. By this we mean, for instance, that
when the wavelets and generators on the primal side are to vanish
up to some order at zero, there are no boundary constraints at zero
for the functions in the dual system (and analogously for all possible
combinations).
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e Using tensor products, this leads to biorthogonal wavelet bases

voi c Fo)bd, 9 c POy

e The bases
Pl = o k7t C F(Ty)Y, W= 0okt F(TY)T,
are biorthogonal with respect to the inner product (-,-); defined by
(9.9).
e The collections
V= S, W= U, (10.14)

where S,U are defined in (10.11), are biorthogonal wavelet bases on I'
relative to the inner product (9.8). Moreover, from Theorem 10.1 and
(10.3), (10.4) one infers that for F = H*®

1T sy ~ [D*dle,. (10.15)

The range of s € R is constrained here by the regularity bounds v, of
the bases U0 W respectively, and by the regularity of I', which re-
stricts the range of Sobolev indices. As before, D? denotes the diagonal
matrix with entries (D®), » = 25|’\'5>\7,\/.

10.4. Computational aspects

In practice one would not compute W' explicitly. To discuss this issue,
consider the inner product

M

(viu) := Z(Uz', Ui,

=1

on ITM, Ly(T;), which is of course also equivalent to (-,-) defined by (9.8).
Formally the stiffness matrix relative to ¥T constructed above is given by

(L, W) = (S*L{T i, (¥ }idm,

where S is defined in (10.11). When £ is an isomorphism from F(T') into
F*(T'), Theorem 10.1 assures that £ := S*£S is an isomorphism from
I, = [IM, F(Ty)! into T := [T, F*(T;)", that is

£yl ~ IvVlim, v ell,. (10.16)
Thus the problem Lu = f is equivalent to
Lnu = f, (10.17)
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where f = S§*f = V f. Of course, when u solves (10.17), then u = Su is
the solution to the original problem. Straightforward calculation shows that
(10.17), in turn, can be stated as

M
S Liu=fi,, i=1,...,M,
=1

where
Liy=xr, P LPxr,, fi=xr,P'f, il=1,...M. (10.18)
If, in addition, £ is selfadjoint, one infers from (10.16) that
VI, ~ (Lav, v)m.
Thus, choosing v := {vé;;}},, this yields
|1 Liivllpepyt ~ I0lp@y, i=1,..., M, (10.19)
which suggests solving (10.17) by an iteration of the form

M
Wt =l +wli - L), i=1,...,M. (10.20)
=1

In fact this fits into the framework of Schwarz-type iterations described
in Section 6.5. Specifically, on account of Theorem 10.1, one can apply
Theorem 6.9, where S, defined by (10.11), plays the role of the mapping R
in Theorem 6.9, so that convergence of the iteration follows from Theorem
6.10.

Hence the solution of (10.17) has been reduced to the parallel solution of
local problems of the form

Ei,iui:gi, izlv-'wM’ (1021)

which may be viewed as a domain decomposition method. On account of the
relation F(T;)! = {gok; ' : g € F(O)“*} (¢f. (9.7)) and the definition of the
bases Wi, each equation in (10.21) is in effect an elliptic problem defined
on the unit cube. On the unit cube O, wavelet bases with all the desired
properties are available. In addition, full advantage can be taken of highly
efficient tensor product grid structures. As will be shown in Section 11,
the adaptive potential of wavelet bases for elliptic problems can be fully
exploited to facilitate an economic solution of each equation (10.21).

Note that, in principle, the approach works for differential as well as
integral operators £. The practical realization of the pullback of £;; to O
depends, of course, on the type of £. Let us therefore briefly comment on
the practical aspects. First observe that, on I';,

YLt = xr, Pl = xr, Bl (10.22)
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Now, if a wavelet ¢Li is supported inside I';, then its trivial extension (1L#)T
to I‘g (by zero) already belongs to F (I‘I ). However, the extensions construc-
ted by Ciesielski and Figiel (1983) may still give rise to a nontrivial extension
Pyl = E;pLi, which on Fg \ T; differs from zero, and hence from (y/L:)T,
even though the wavelet ¥L¢ is not close to the outflow boundary. To sup-
press this strong coupling between adjacent patches, Dahmen and Schneider
(1997b) have shown how to construct extensions with the required continu-
ity properties for which all wavelets in ¥ that already belong to F(I';)T
are extended by zero. This is again done by exploiting properties of suit-
able local multiscale bases on (0. The nontrivial extension of the remaining
(boundary-near) wavelets represent the (scale-dependent) coupling condi-
tions for the domain decomposition method. Thus Lagrange multipliers
are not necessary for coupling the subproblems so that indefinite sytems
are avoided. Note also that the discretizations, particularly their respective
order of exactness, can be chosen independently on each patch T;.

Since domain decomposition is comparatively less developed for integral
operators, we take a closer look at the case where £ has a global kernel
K. One can show (Dahmen and Schneider 1997b) that the entries of the
stiffness matrices then take the form

(el = [ [ K@l @ ayds,  (023)
0o

where the kernel K;; depends on the indices v, A of the wavelets in the
following way. When both wavelets are supported in the interior of the cube,
one has K; (z,y) = |0ki(x)||0ki(y)| K (ki(x), ki(y)), where |Ok;| denotes the
functional determinant of the mapping ;. However, when both wavelets
have nontrivial extensions, for instance, one has to set

Kii(z,y) = |0ki(2)]|0m1(y) (] © Ef)K)(ki(x), ki(y))-

The remaining mixed cases are analogous. Hence, in this case the coupling
conditions simply boil down to modifications of the kernel. Note that (E; ®
E}) are restriction operators. In particular, this enforces the appropriate
boundary conditions. In fact, one (locally) has

Ki(y) € FO)Y, Hy(z,) € FO)M, (10.24)

as long as the parameters y, z stay away from the respective outflow bound-
aries. This has the following important consequences (Dahmen and Schnei-
der 1997b).

Moment conditions

Due to the complementary boundary conditions satisfied by the pairs of
bases W54, W on O, the spaces S (@?’l) generally do not contain all poly-
nomials of order d on O. Hence the wavelets 9™ near the outflow boundary
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do not have vanishing moments of corresponding low orders, but annihilate
only those polynomials locally contained in F(0)"¢. Therefore the wavelets
still satisfy the estimate (9.16) for any function f € F(O)™*. In view of
(10.24), the kernel K;; satisfies these boundary conditions. Hence the same
argument that led to (9.27) still applies to K, ;(z,y). Therefore the wavelets
still give rise to estimates like (9.22), (9.27) and hence to optimal compres-
sion determined by the order d of the dual multiresolution. In particular,
the kernels K;; become more and more negligible when I'; and I'; are far
apart.

Norm equivalences

Since the wavelets on O give rise to norm equivalences of the form (6.1),
the individual equations (10.21) are easily preconditioned. Moreover, the
analysis of corresponding adaptive schemes described in the next section
applies to the situation at hand.

11. Analysis of adaptive schemes for elliptic problems
11.1. Some preliminary remarks

The motivation for the following discussion is twofold. On one hand, the
inherent potential of wavelet discretizations for adaptivity has been stated
often above. However, as natural as it appears, a closer look reveals that on
a rigorous and on a conceptual level a number of questions remain open. The
discretizations typically involve several types of truncation that often remain
unspecified. It is not always clear how corresponding errors propagate in
the global scheme and how the tolerances have to be chosen to guarantes a
specified overall accuracy. Moreover, thresholding arguments are often not
clearly related to the norm, that is to measure global accuracy.

In many studies, some a priori assumptions are made about the type of
singularity, for instance, in terms of the distribution of significant wavelet
coefficients. For periodic problems the singularities of the solution are de-
termined by the right-hand side alone (when the coefficients are smooth).
This is no longer the case when essential boundary conditions for more com-
plex geometries are imposed. Finally, what is the preferred strategy? In
the spirit of image compression, a fine-to-coarse approach would aim at dis-
carding insignificant wavelet coefficients, starting from a discretization for
a fixed highest level of resolution. The obvious disadvantage is that such
an approach accepts the complexity of a fully refined discretization at some
stage. Alternatively, in a coarse-to-fine approach, one would try to track the
significant wavelets needed to realize the desired accuracy, starting from a
coarse discretization. The risk of missing important information along the
way is perhaps even higher in this approach. However, the analysis outlined
below indicates ways of dealing with this problem. So the subsequent dis-
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cussion can be viewed as an attempt to address such questions on a rigorous
level, and thereby complement the intriguing adaptive algorithmic develop-
ments discussed before.

On the other hand, adaptive techniques have been extensively studied in
the context of finite element discretizations of (primarily) elliptic differential
equations; see, for instance, Babuska and Miller (1987), Babuska and Rhein-
boldt (1978), Bank and Weiser (1985), Bornemann et al. (1996), Eriksson,
Estep, Hansbo and Johnson (1995) and Verfiirth (1994). These methods are
based on a posteriori error indicators or estimators. In practice they have
been proven to be quite successful. However, the analysis and the schemes
are rather dependent on the particular problem at hand and on the partic-
ular type of finite element discretization. The geometrical problems caused
by suitable mesh refinements become nontrivial for 3D problems. From a
principal point of view, it is furthermore unsatisfactory that the proof of
the overall convergence of such schemes usually requires making an a priori
assumption on the unknown solution, as explained below in more detail.

The adaptive treatment of integral equations in the context of classical
finite element discretizations is comparatively less developed. The global
nature of the operator makes a local analysis harder. Typical a posteriori
strategies therefore constrain the structure of admissible meshes (Carstensen
1996), which certainly interferes with the essence of adaptive methods.

These considerations have motivated recent investigations by Dahlke et
al. (1997b), which substantiate that the main potential of wavelet discret-
izations lies in adaptivity. Some of the ingredients of the analysis will be
outlined next. As in the context of preconditioning, a wide range of prob-
lems, including differential as well as integral operators, can be treated in a
unified way. A convergence proof is only based on assumptions on the (ac-
cessible) data rather than on the (unknown) solution. Furthermore, there is
no restriction on the emerging index sets.

Again, a key role is played by the validity of norm equivalences of the form
(6.1) in combination with compression arguments based on the estimates
(9.27) or (11.2) below.

To bring out the essential mechanisms, we will refer to the general problem
in Section 2.3. Thus we will assume throughout the rest of this section that £
satisfies (2.23) and (2.25). We consider stationary elliptic problems because
they also arise in timestepping schemes. In fact, time-dependent problems
are in some sense even easier, because information from the preceding time
step can be used. Likewise the present formulation can be viewed as an
ingredient of an iteration in nonlinear problems.

Moreover, in view of the developments in preceding sections, it is justified
to assume that ¥ and ¥ are biorthogonal wavelet bases satisfying the norm
equivalences (6.1). Their range of validity is to satisfy (6.14). Specifically,
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there then exist finite positive constants c3, ¢4 such that
c3| D, < |dT T ¢ < ca DMl (11.1)

Moreover, the corresponding spaces S(®;) are assumed to be exact of order d
and the wavelets ¥\, A € V_, satisfy a suitable version of moment conditions
of order d (see, for instance, (9.15)) when L is an integral operator, or are
regular enough when £ is a differential operator, so that in either case the
estimate

2= 1A=l

o~ (INT+ADE L) < i
'< T/’Aﬂ/’A)l ~ (1+2min(|A[,|A'|) diSt(Q)\,Q)\’))n+2d+2t

(11.2)

holds (see (9.27)). Finally, we will assume that the Galerkin scheme is stable
(6.7) (recall the comments in Section 9).

11.2. The saturation property

Suppose for a moment that £ is selfadjoint, in which case (2.23) means that
the bilinear form

a(u,v) = (Lu,v) (11.3)
induces a norm which is equivalent to || - || g
1112 = als ) ~ I I (11.4)

In this case a well-known starting point for finite element-based adaptive
schemes is the following observation concerning the equivalence between the
validity of two-sided error estimates and the so-called saturation property
(Bornemann et al. 1996). The basic reasoning can be sketched as follows.
Suppose that S C V C H? are two trial spaces with respective Galerkin
solutions ug, uy. By orthogonality one has

luy —usl| < flu - us].
Moreover, one easily checks that
lu = wy || < Bllu — us|| (11.5)
holds for some 8 < 1, if and only if
(1= 82w —usl < lluy - usll- (11.6)

Here and elsewhere u denotes the exact solution to Lu = f. Thus, if the
refined solution uy captures a sufficiently large portion of the remainder
(11.6) the global energy error is guaranteed to decrease by a factor 3 when
passing to the refined solution uy. Moreover, one has the bounds

luy — us|| < llu—us|l < (1= 8272wy - usl, (11.7)
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which are computable. In practice one controls the local behaviour of uy —ug
and refines the mesh at places where (an estimate for) this difference is
largest. This results in balancing the error bounds. Although this has been
observed to work well in many cases, the principal problem remains that, to
prove convergence of the overall adaptive algorithm, something like (11.6)
has to be assumed about the unknown solution.

Dahlke et al. (19975b) pursue a similar updating strategy. Let some current
solution space Sx and a Galerkin solution us be given. The objective is to
find for a fixed decay rate 3 < 1, a possibly small ACV=A,UV_,ACA
such that

lw = ugllae < Bllu— uallge,

which implies convergence.

11.3. A posteriori error estimates

It is well known that for elliptic problems the error in energy norm can be
estimated by the residual in a dual norm which, at least in principle, can be
evaluated. In fact, since

T := Lup — f = L(up — u),
the bounded invertibility of £ (2.23) yields

cillrallg-+ < llu —uallae < ealiralig—- (11.8)

Expanding the residual rj relative to the dual basis ¥ and taking the Galer-
kin conditions into account, the norm equivalence (11.1) and (11.8) provide

AEVAA AEV\A

1/2 1/2
C1Cs< > 5,\(/\)2) < lu — uallge SCQC4( > 6,\(A)2) . (11.9)

where the quantities
8y = 8x(A) =27 |(ry, ), Ae VA,

are, in principle, local quantities bounding the error ||u — up|| gt from below
and above. They indicate which wavelets are significant in the representation
of u. However, since these quantities involve infinitely many (unknown)
terms, (11.9) is in its present form of no practical use.

The objective of the following considerations is to replace the quantit-
ies 6x(A) in (11.9) by finitely many computable ones which, up to a given
tolerance depending only on the data, still provide lower and upper bounds.

Denoting by uy = (uA,qz))\/), fr = (f,¥») the wavelet coefficients of the
current approximation us and the right-hand side f with respect to ¥ and
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W, respectively, it is helpful to rewrite

Sa(A) =27 £y = S (Lypn, ha)un| - (11.10)

ANeEA

This shows that the size of §5(A) is influenced by two quantities. First, if
the right-hand side f itself has singularities, this will result in large wavelet
coefficients fy. Second, the sum Y ca (L9, ¥a)un gives the contribution
of the current solution which, for instance, could reflect the influence of the
boundary. Thus, to estimate the §x(A) one needs

(a) estimates on the smearing effect of £
(b) some a priori knowledge about f.

So far we have only used the ellipticity (2.23) of £ and the norm equi-
valence (11.1). To deal with (a) one has to make essential use of the decay
estimates (11.2). We now describe their use. Let § < 0—n/2, where ¢ > n/2
is the constant in (11.2). Choose for any € > 0, positive numbers €;, €2 such
that

7 _45
€%d+2t +92 e <e.
For each A € V, define the influence sets

Vae:={NeV: ’!AI —|N|| < &5t and 2@ ALV dist(Qy, Q) < €71},

where (1 again denotes the support of 1. The sets V . describe the signi-
ficant portion of (Lup, 1)) appearing in the residual weights 6,(A) (11.10).
In fact, using the estimate of (9.35), one can show the existence of a constant
c5 independent of f and A, such that the remainder

exi= Y. (Lon,¥a)uy

/\'EA\V,\,e

can be estimated by

—

( Z 2~ A2t ‘6)\|2)§ < cseljuall; (11.11)
AEVAA

see also Dahlke et al. (1997b), Dahmen et al. (1993b) and Dahmen et al.
(1994b). Note that, again by (6.1},

luall ~ uallge ~ 1D ua, ©adlles,

so that the right-hand side in (11.11) can be evaluated by means of the
wavelet coefficients of the current solution up. Moreover, one can even give
an a priori bound. In fact, the stability of the Galerkin scheme (6.7) states,
on account of the uniform boundedness of the Q% in H™* (see Theorem 5.8),
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that
luall < NQASflg— < Il (11.12)

As for (b) above, by construction, the significant neighbourhood of A in
VA

NA,E = {/\GV\A : AﬂV)\,e#@} (11.13)
is finite
#]VA’€ < 00.

Outside Ny, the quantities 6,(A) in (11.10) are essentially influenced by
wavelet coefficients of f. But this portion is a remainder of f. In fact, by
(6.1),

1
¥ 9=2t1A] lfA|2) P <l f - Qhuny Na-

)\EV\(AUNAYE)

< ¢cg inf ||f —v|g-t <o inf ||f —vllgt,
VESAUN, vESy

for some cg < oo. This suggests defining

(A€ =27 ST Ly, vau|, Ae VA
NEANV

Note that, in view of (11.13),
da(A,e) =0, AeV\A, AXgN,,. (11.14)
The main result can now be formulated as follows (Dahlke et al. 19975).
Theorem 11.1 Under the above assumptions, one has
fu—uallge < coer(( 5 dr(A,02)* +chellfllgos +co inf If —vlly-:)
AENA veSa

as well as

1
1 1 )
(X dr(8,07)" < = lu—unllye + chel|flly—e + 6 inf [If = vl
AENY c1¢3 vESA

Moreover, for any A C V, A C A, one has
1
1 1 )
( Z dA(A»f):Z) ' < cien luz — UA“Ht‘*‘ClsE | fllg-et+ce inf ||f —vll g
AANN, 173 vESa
This result provides, up to the controllable tolerance

T(A,€) := cseps || fll - + c6 inf ||f —v|lg-e,
VESA
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computable lower and upper bounds for the error ||u — ual|4:. For second-
order two-point boundary value problems, estimates of the above type were
first obtained by Bertoluzza (1994). Under much more specialized assump-
tions, results of similar nature have also been established in the finite element
context; see, for example, Dorfler (1996).

11.4. Convergence of an adaptive refinement scheme

In the present setting, it can be shown with the aid of Theorem 11.1 that,
under mild assumptions on the right-hand side f, a suitable adaptive choice
of A enforces the validity of the saturation property (11.6). We continue
with the notation of Section 11.3. However, for simplicity we confine the
discussion to the selfadjoint case (11.3), (11.4), that is, the norm || - || g+ is
replaced by the energy norm || - ||. The constants ¢; have to be properly
adjusted. The following theorem was proved by Dahlke et al. (19975).

Theorem 11.2 Let tol > 0 be a given tolerance and fix 8 € (0,1). Define

C* = (i+ 1_9), (11.15)

CiC3 26204

choose p > 0 such that

1-0
i — 11.1
e < 2(2 — B)eaey’ ( 6)
and set
u tol
€= —————. (11.17)
2c5 | fll g

Suppose that for A C V, one has

. 1
cg inf ||f —vllg- < ;p tol.
VESH 2
Then, whenever A € V, A C A is chosen so that
1 1
(L ane?) 20-0( X dne?)
AEANN, AENA,e

there exists a constant 8 € (0,1) depending only on the constants y, 8, ¢;,
i=1,...,6, such that either

Ju—ug| < Bllu—wuall

or

(ML
(NI

< tol.

( Z dA(A,€)2> =( Z d/\(A7f)2>

AEN ¢ AEVAA
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For the discussion of unsymmetric problems see Dahlke et al. (19975) and
Hochmuth (1996).

Of course, the idea is to choose A D A as small as possible, that is, in any
case A\ A C Np .. This leads to the following.

ALGORITHM 7
Choose Ag =, eps > 0, tol > eps, 6 € (0,1).

(1) Compute C*, u according to (11.15), (11.16).
(2) Compute € = e(u,tol) by (11.17).

(3) Determine A C V, Ag C A such that

1
cg inf || f —v||g-¢ < p tol.
vESA 2

(4) Solve
(Lup,v) = (f,v), forall ve Sx.
(5) Compute

MAc :=< > d,\(A,f)2>%-

AENA e
If npe < tol:

o If tol < eps, accept up as solution and stop.

e Otherwise set A — Ag, 28 — tol, and go to (2).

Otherwise, go to (6).
(6) Determine A with A C A C AU Ny ¢ such that

(> d,\(A,e)2>% > (1 - )mae.

PYTN
Set A — A and go to (4).

Although quite different with regard to its technical ingredients, the above
algorithm is very similar in spirit to the adaptive scheme proposed by Dorfler
(1996) for bivariate piecewise linear finite element discretizations of Poisson’s
equation. As above, Dorfler (1996) chooses the coarsest grid in such a way
that all errors stemming from data are kept below any desired tolerance.

A brief comment on step (4) in Algorithm 7 is in order. By Theorem 6.1,
the principal sections of the matrix Bp := DLW, U4)TD~* are well con-
ditioned. This can be exploited to update a current Galerkin approximation
up, as follows. Let uy = (uA,\I~1A)T be the vector of wavelet coefficients
of up. To compute the coeflicient vector uz of uj we choose an initial
approximation v according to

{’U,)\, AEA,
vy =

wr. AEALA, (11.18)
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where Wi\ are the coefficients of the Galerkin solution Wi\A of the com-
plement system

(Lwgyp,v) = (fiv), v € Sy, =span{yhy : A€ A\ A}.

The corresponding matrix entries have to be determined anyway for the
adaptive refinement. Since, by (6.16), the corresponding section B Aa of By
is well conditioned, only a few conjugate gradient iterations are expected to
be necessary to approximate w A\A well enough to provide a good starting
approximation of the form (11.18). This will then have to be improved by
(a few) further iterations on the system matrix Bjy.

11.5. Besov regularity

The results of the previous section imply convergence of the adaptic scheme
but do not provide any concrete information about the efficiency, for in-
stance by relating the final accuracy to the number #A needed to realize it
by the scheme. The ideal case would be that the scheme picks at each stage
the minimal number of additional indices needed to reduce the current error
by a fixed fraction. This cannot be concluded, since the scheme selects the
indices with respect to bounds, not with respect to the true error. Never-
theless, since these bounds are lower and upper ones, one expects that the
selected index sets are close to minimal ones. Given this assumption, the
question of for which circumstances the above adaptive scheme is signific-
antly more efficient than working simply with uniform refinements is closely
related to characterizing the efficiency of so-called best N-term approxim-
ation, or nonlinear approrimation. A beautiful theory for these issues has
been developed in a number of papers; see, for instance, DeVore and Popov
(1988a), DeVore et al. (1992) and DeVore and Lucier (1992). Here we in-
dicate very briefly some typical facts suited to the present context. To this
end, consider

O'N,t(g) = inf{”g— Zd)\l/l)\HHt cdy ER,AEACV, #A =N} .
A€A

Employing the norm equivalence (5.38) yields
ont(v) ~ ono(Zv) = on(Zev), (11.19)
which in turn leads to the following (Dahlke, Dahmen and DeVore 1997a).

Remark 11.3 Let v € H'. We take Ay to be a set of N indices A for
which 28X |(v,4,)| is largest. Then one has

ont(v) ~ |[v — Qayvllmt, N EN. (11.20)
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Thus, picking the N first largest weighted coeflicients realizes asymptotically
the best N-term approximation relative to the norm | - ||+ and hence, in
case (11.4), also relative to the energy norm || - ||.

Combining (11.20) with analogous results about on+ for t = 0, the best N-
term approximation of a function v relative to || - ||zt can be characterized
in terms of its Besov regularity (Dahlke et al. 1997a).

Proposition 11.4 Assume that a — ¢ < 7y and let for ¢t < o

1 a—-1t 1
== + 2 (11.21)
Then one has
oo T*
> (N gy w)) < oo (11.22)

N=1

(where n is again the spatial dimension of the underlying domain Q), if and
only if v € B&(L,+(12)). Recall the characterization of Besov norms (5.46).

Proposition 11.4 has an interesting application to the Poisson equation
—Au=f in Q, u=0 on 99, (11.23)

when 2 is a bounded Lipschitz domain in R™. The efficiency of the best
N-term approximation when applied to the solution of Laplace’s equation
has been studied by Dahlke and DeVore (1995). However, these results were
formulated with respect to approximation in Ly(2). For elliptic equations,
the energy norm is more natural. A combination of Proposition 11.4 and the
results of Dahlke and DeVore (1995) provides the following result concerning
approximation relative to || - |1 (Dahlke et al. 1997a).

Proposition 11.5 Let  be a bounded Lipschitz domain in R™, and let u
denote the solution of (11.23) with f € B¢} (L2(R)), a > 1. Then

Z (NS/HO'N’l(U))T <oo forall 0<s<s*/3, (11.24)
N=1

where s* = min{ﬂf’j,a +1}and 7 =(s—1)/n+1/2.

To illustrate this result, consider the example where n = 2. If & > 2, then
s* = 3. Hence, in this case, the nonlinear method gives an H'-approximation
to u of order up to N~1/2 whereas a linear method, that is, uniform refine-
ments, using N terms could only give N~1/4 in the worst case.

These facts indicate that adaptive refinements will generally perform sig-
nificantly better. Establishing a closer connection between the adaptive
scheme discussed in the preceding section and N-term approximation is an
interesting question under current investigation.
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12. What else?

Evidently a lot more than could be included in a survey. Therefore I would
like to add only a few brief comments on further interesting directions.

Collocation

It has been pointed out that collocation plays an important role in con-
nection with the fast evaluation of nonlinear terms. Bertoluzza (1997) has
discussed some promising features of collocation in connection with highly
accurate discretizations. There, interpolatory scaling functions are employed
and corresponding analogues to hierarchical bases are established. Again,
interpolatory representations are helpful with regard to evaluating nonlinear
terms.

Transport problems

The above concepts are more or less tailored to elliptic problems. It is less
clear how to treat transport terms. Typical model problems are convection—
diffusion problems of the form

—Au+pf(z)-Vu=f in 2, u=0 on 099, (12.1)

where the convection term is strongly dominant. Canuto and Cravero (1996)
have proposed discretizing (12.1) with a conventional finite element method
and use wavelet expansions of the current solution to determine successive
mesh refinements at locations where wavelet coeflicients are large. First res-
ults by Dahmen, Miiller and Schlinkmann (199x) indicate that the concept
of stable completions can be successfully employed to design level-dependent
Petrov—Galerkin discretizations, which in a multigrid context recover the
usual multigrid efficiency for elliptic problems even in the case of strong
convection terms.

Discrete multiresolution concepts have been developed by Harten (1995),
with special emphasis on the treatment of hyperbolic conservation laws. It
is well known that such systems can be viewed as evolution equations for
cell averages. This fact serves as the basis for finite volume discretizations.
However, when advancing in time, these schemes require at some stage the
computation of fluxes across cell boundaries, which in turn need pointwise
values of the conservative variables. To realize high accuracy, one therefore
has to design highly accurate reconstruction schemes to recover the point-
wise values from the cell averages, which is actually the only place where a
discretization error is introduced. Unfortunately, in realistic problems the
evaluation of corresponding numerical fluxes is very costly. The main thrust
of Harten’s concept therefore aims at reducing the cost of numerical flux
computations according to the following idea. Fluxes are initially computed
only on a very coarse grid (using, however, data corresponding to the highest
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level of resolution). The flux values on successively finer grids are then de-
termined either by cheap interpolation schemes from those on coarser levels,
whenever they are smooth, or otherwise by expensive accurate schemes.
This decision is based on a suitable multiscale representation of the data.
This is highly reminiscent of data compression techniques. The underlying
multiscale decomposition concept proposed by Harten is very flexible and
has to be made concrete in each application. The multiscale transformations
have the format (3.26) and (3.28), although, in principle, no explicit know-
ledge of underlying bases ®;, ¥; is required. Nevertheless, many technical
as well as conceptual problems arise when applying this methodology to
concrete problems, in particular, when dealing with several space variables.
Some recent contributions can be found in Gottschlich-Miller and Miiller
(1996), Sjogreen (1995) and Sonar (1995), for instance.

Software

To unfold the full efficiency of most of the concepts discussed so far, rather
new data structures are needed. It does not seem to be possible to simply
hook wavelet components to existing software for conventional discretization
schemes. Existing codes still seem to be confined to model problems. The
beginnings of a systematic software development for wavelet schemes in a
PDE context are discussed by Barsch et al. (1997), for example.

Wavelets as analysis tools

The primary objective of the developments detailed in this paper is the un-
derstanding and design of highly efficient solvers for large-scale problems. 1
find the variety of contributions very promising and interesting. However,
because of the state of the software development, and for conceptual reas-
ons mainly in connection with geometry constraints, it is fair to say that
wavelet schemes have not yet become quite competitive with well tuned
multigrid codes for realistic problems. On the other hand, the discussion
also indicates that the potential of wavelets has not yet been exhausted, and
that the results that have been achieved so far provide a highly stimulating
source of ideas and further progress. In fact, the above comments on the
convection—diffusion problem suggest that true benefit for future generations
of multiscale techniques may result from a marriage of different methodolo-
gies. I would be very pleased if the present paper could be of some help in
this regard.

On the other hand, it has already been indicated that, aside from al-
gorithmic developments, wavelets offer powerful analysis tools. An example,
namely investigating the boundedness of Galerkin projectors in Ly-Sobolev
spaces has already been mentioned by Angeletti et al. (1997). The determ-
ination of Besov regularity of solutions to elliptic boundary value problems
(Dahlke and DeVore 1995, Dahlke 1996) is another intriguing instance which
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is important for the understanding of adaptivity. The multiresolution ap-
proach to homogenization (Brewster and Beylkin 1995, Dorobantu 1995)
opens further startling perspectives. Wavelets have recently been employed
in the study of turbulence and multiscale interaction of flow phenomena
(Elezgaray, Berkooz, Dankowicz, Holmes and Myers 1997, Wickerhauser,
Farge and Goirand 1997, Farge et al. 1992).

In summary, it seems that wavelets have become indispensible as a con-
ceptual source for understanding multiscale phenomena and corresponding
solution schemes.
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